2008

MICROBIOLOGY

PAPER—IX

Full Marks: 40

Time: 2 hours

Answer two questions from each Group

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

GROUP-A

[Marks: 20]

Answer any two questions

1. Answer any four bits:

 $2\frac{1}{2} \times 4$

(a) Evaluate

$$\lim_{x \to 0} \frac{\sqrt{1 + 2x} - \sqrt{1 - 3x}}{x}$$

(b) Find the value of

$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n}{n^2} \right).$$

(c) A function is defined as follows:

$$\varphi(x) = -x \quad \text{when} \quad x \le 0$$

$$= x \quad \text{when} \quad 0 < x < 1$$

$$= 2 - x \quad \text{when} \quad x \ge 1$$

Show that $\varphi(x)$ is continuous at x = 1.

(d) If

$$y = \frac{\cos x - \cos 2x}{1 - \cos x},$$

find $\frac{dy}{dx}$.

(e) If

$$y = \sqrt{2x} - \sqrt{\frac{2}{x}} + \frac{x+4}{4-x}$$

find $\frac{dy}{dx}$ for x = 2.

(f) Integrate

$$\int \frac{a \sin^3 x + b \cos^3 x}{\sin^2 x \cos^2 x} dx.$$

(g) Evaluate

$$\int \frac{\cos x \, dx}{\left(a + b \sin x\right)^2}$$

2. Answer any four bits:

$$2\frac{1}{2}\times4$$

- (a) Interpret Geometrically: $\frac{dy}{dx} = 0$.
- (b) Given xy = 4, find the maximum and minimum values of 4x + 9y.
- (c) Show that

$$f(x) = x^3 - 6x^2 + 24x + 4$$

has neither a maximum nor a minimum.

(d) Evaluate

$$\int_{1}^{2} x^{2} dx$$

and interpret it geometrically.

(e) A particle is moving in a straight line. Its distance x cm. from a fixed point O at any time t second is given by the relation

$$x = t^4 - 10t^3 + 24t^2 + 36t + 12$$

when is it moving most slowly? (velocity is given by $\frac{dx}{dx}$).

- (f) Obtain a mathematical model/structure for a bacterial culture undergoing balanced growth such that the rate of increase in bacteria at any particular time is proportional to the member or mass of bacteria present at that time.
- 3. (a) Find $\frac{dy}{dx}$ where $y = (x \sin x)^3$.
 - (b) Let the growth of a microorganism satisfy the differential equation

$$\frac{dP}{dt} = kP - qP, \quad k > 0$$

where P(t) be the population of microorganism at time t. Let q is called dilution rate and defined by q = Q/V. Where V is the volume of nutrient liquid medium of a growth

chamber. Q is rate of volume per unit time supplied to the chamber. Show that q > k the culture is being diluted and the population will be declined to zero. If q < k the density of microorganism in the chamber will increase. 4+6

GROUP—B

ferent typ ected fron the table

[Marks : 20]

Answer any two questions

- 4. (a) Define correlation and regression.
 - (b) Find out regression equation of Y on X from the following data for 7 fishes of a species:

X: 13.4 15.1 15.3 16.8 17.5 19.2 21.2

Y: 2.1 2.3 2.3 2.6 2.7 3.0 3.3

4 + 6

- 5. (a) Write down the probability mass function (p.m.f.) of the Binomial distribution with parameters n and p.
 - (b) What is the probability that a family with five children will have 3 boys and 2 girls.

(c) Find the mean and the median of the following data:

6. Fishes were reared in three different ponds with different types of food. A sample of 5 fishes was selected from each pond. Their weights are recorded in the table below. Find out if these data suggest a difference in average weight of fishes reared in different ponds (i.e. perform an analysis of variance of the data):

Pond 1	Pond 2	Pond 3
20	28	20
26	26	19
24	30	23
22	31	22
20	27	26

Given that

 $F_{2, 12} = 3.89$ at 5% level of significance $F_{2, 12} = 6.93$ at 1% level of significance.

10