PERFORMANCE EVALUATION OF INDIAN MUTUAL FUNDS SCHEMES WITH RESPECT TO THEORETICAL PERFOR-MANCE EVALUATION MEASURES

Joyjit Dhar*

Abstract

The present study has made an attempt to evaluate the performance of equity oriented mutual funds in India during May 2000 to March 2012 taking into consideration the impact of global financial and economic crisis (2008). Findings of the study reveal that the global financial crisis has affected the performance of Indian mutual funds schemes which had larger exposure in equity shares. Secondly, the average return of the sample mutual fund schemes (growth, ELSS and balanced) have outperformed the market indices for all the periods. However, based on the multi criteria conformity the top five schemes during the overall period belong to mainly two AMCs, Reliance and HDFC out of forty one AMCs which is currently in vogue in the Indian capital market. This is not an encouraging finding in respect of the performance of the Indian mutual funds industry as a whole.

Keywords: *Mutual funds, Financial crisis, Performance evaluation, Risk-adjusted performance*

JEL classification: G23, G01, G10, G12

Introduction

The mutual funds industry in India started its journey in 1964 with the formation of the Unit Trust of India (UTI). Since then it has come a long way and has grown significantly during the last five decades in terms of mobilization of funds, number of schemes offered and participation of retail investors in the industry. This transformation has occurred owing to various policy initiatives taken by the Government of India (GOI) to provide an opportunity for middle- and lower-income groups to participate in the capital market. Consequently, to fulfill the

^{*}Associate Professor, A.B.N. Seal College, Cooch Behar E-mail ID- joyjitd349@gmail.com

expectations of those millions of investors, the mutual funds are required to function as successful institutional investor. In this backdrop, performance evaluation of mutual funds is an important issue for different stakeholders of the market. This will enable an investor to know how much return has been generated by the concerned fund manager and what risk level has been considered in generating such returns. Besides, such an evaluation exercise may help an investor to compare the performances of different fund managers over time and also vis-à-vis their peers in the industry. For the fund managers, it provides a method for identifying their strengths and weaknesses in the investment process which will help them to take appropriate future course of actions. In this respect, one typical approach is to select several attributes which are common to all the investment instruments and then try to figure out to what extent one particular instrument possesses these attributes. Among those attributes, two extremely important attributes for all kinds of investment avenues are return and risk. Every investor is interested in getting maximum returns but those returns are to be achieved with minimum level of risk.

Nevertheless, a closer look at the fund fact sheets of various mutual funds schemes also reveal that too much importance has been given on the returns provided by the schemes in the past. There are also comparisons between fund return and the benchmark return but the problem of risk is not properly addressed. However, risk as mentioned earlier is the most crucial input in people's decision making about investment in mutual funds. This is why an attempt has been made in this study to internalize the component of risk in performance evaluation measures which in turn would enable investors and fund managers to efficiently evaluate the relative performance of different mutual funds schemes in terms of their risk-adjusted returns.

The theoretical foundation of performance evaluation owes much to the capital asset pricing theory (CAPM) which was developed simultaneously by Sharpe (1964), Lintner (1965) and Mossin(1966) based on Markowitz's (1952) mean-variance portfolio theory. Following CAPM, Treynor (1965), Sharpe (1966) and Jensen (1968) developed relative and absolute performance evaluation models which contributed significantly to the literature.

The single factor CAPM came under severe criticism from Roll (1977) on the ground of benchmark appropriateness. Roll argues that the use of CAPM as a benchmark is inconsistent, since the market portfolio is unobservable and consequently, different benchmark portfolios give different results. Besides, there are studies such as Ross (1976), Fama and French (1992, 1993), which showed that expected returns cannot be adequately explained by a single risk factor. Fama and French (1993) proposed a 3-factor model taking into account the market portfolio and two additional variables related to firm size and book-to-market ratio which showed empirical evidence of the power to explain a cross-section of average returns. In addition to Fama and French's three-factor model, Carhart (1997) suggested that fund managers employed momentum strategy¹ in order to earn superior returns.

Performance Evaluation of Indian Mutual Funds Schemes with Respect...

In the Indian context there are some studies which critically examined the risk-adjusted performance of mutual funds. Notable contributions on this aspect were made by Jayadev (1996), Thomas (1998), Kulkarni (1998), Gupta and Sehgal (1998), Chakrabarti and Rungta (2000), Gupta (2001), Chander (2002), Guha (2008) and Anand and Murugaiah (2008). However, the evidence of superior performance of Indian mutual funds schemes with respect to various risk-adjusted performance measures is not conclusive according to these studies. Consequently, this study has tried to examine the performance of equity oriented mutual funds in India in respect of seven conventional performance measures, viz. Sharpe ratio, Treynor ratio, Jensen alpha, Information ratio, Appraisal ratio, Sharpe differential return measure and M² measure, all of which were not studied by the earlier studies. Further, in order to evaluate the performance of sample mutual funds schemes with robustness this study has invoked the multi-criteria approach usually not found in performance appraisal analysis of mutual funds schemes in India. Finally, this study has attempted to capture the impact of global financial and economic crisis (2008) on these conventional performance evaluation measures.

Thus, the objectives of the present study may be identified as follows:

- (i) To evaluate the performance of the Indian mutual fund schemes in terms of seven conventional measures.
- (ii) To adopt multi-criteria approach for robust conclusion.
- (iii) To capture the impact of global financial and economic crisis (2008) on performance evaluation of Indian mutual funds schemes.

Theoretical Performance Evaluation Measures

(i) **Sharpe ratio**: It is a ratio of the excess return of the portfolio (mutual fund scheme) over risk-free return and total risk of the portfolio measured in terms of standard deviation. This risk-adjusted method is used to rank the performance of mutual funds. This measure can be given as:

where, $R_p =$ average return of the scheme p for the concerned period

 R_{f} = average risk- free return for the same period

 σ_p = the total risk of the scheme p for the same period

 S_{R} is a measure of return per unit of risk earned by the scheme. A mutual fund scheme that provides the highest return per unit of risk would be considered as the best performer.

(ii) Treynor ratio: It is a ratio of the excess return of the portfolio (mutual fund scheme)

Dhar

over risk-free return and volatility of the portfolio return measured in terms of portfolio beta. Beta of a mutual fund scheme shows how the return of a fund changes due to the changes in the market. Now, as the market risk of a fund represents its sensitivity to market movements, beta is considered as a measure of market risk or systematic risk. This measure can be given as:

where, R_p = average return of the scheme p for the concerned period

 R_{f} = average risk- free return for the same period

 β_p = the market risk or systematic risk of the scheme p for the same period

Likewise, Sharpe ratio it is also a measure of return per unit of risk and this risk-adjusted method is used to rank the performance of mutual funds. A mutual fund scheme that provides the highest Treynor ratio would be considered as the best performer.

(iii) **Jensen's Alpha** (α): Jensen measure is an absolute measure of performance which explicitly takes into account the effects of the risk on returns of the portfolio. This measure has a great importance to the practitioners as it is logically derived from the capital asset pricing model (CAPM). The Jensen measure may be expressed using excess return version of the CAPM as follows:

where, $R_p =$ the return of the scheme p for the concerned period

 R_{f} = the risk- free return for the same period

 R_m = the market return for the same period

 β_p = the systematic risk of the scheme p

 ε_{n} = the error term

The intercept term α also known as Jensen's Alpha is the differential return earned by the scheme due to fund manager's stock selection ability. A positive value of α implies that the scheme 'p' has an average return greater than benchmark return, i.e. superior performance. On the other hand, a negative value of α indicates that the scheme or portfolio return is less than the benchmark return.

(iv) **Information ratio:** Information ratio is defined as the manager's excess return over the relevant benchmark relative to the standard deviation of those excess returns. Information ratio denoted by IR is given as,

Performance Evaluation of Indian Mutual Funds Schemes with Respect...

$$IR = \frac{R_p - R_b}{S_{p-b}} \quad \dots \tag{4}$$

where, $R_p =$ average return of the scheme p for the concerned period

 R_{h} = average return of the benchmark for the same period

 S_{p-b} = standard deviation of the difference between returns of the scheme and the benchmark return.

The numerator of equation (4) is known as the 'tracking error' (TE) which is widely used in the Indian mutual funds industry to determine the superiority of performance of a fund. The denominator is known as the 'tracking error volatility' (TEV). Thus, information ratio is the ratio of TE and TEV. While determining risk on a relative return basis, this ratio eliminates market risk, showing only risk taken from active management. Therefore, the information ratio shows how a manager has performed per unit of active risk taken. This is why this measure is widely used for comparing the active management skills of the fund managers. The higher the information ratio, the higher will be the active return of the portfolio, given the amount of risk taken, and the better the managerial performance.

(v) **Appraisal ratio:** This ratio is used to measure the quality of a fund's stock picking ability. It is defined as the fund's alpha to the portfolio's unsystematic risk or residual standard deviation. This measure can be given as:

$$AR = \frac{\alpha}{\sigma_e} \quad \dots \quad (5)$$

The appraisal ratio measures the manager's performance by comparing the return of the stocks selected by them to the unsystematic or specific risk of those selections. The higher the Appraisal ratio, the better is the performance of the manager concerned.

(vi) M^2 measure: Sharpe ratio though widely used for performance evaluation of managed portfolios is not easy to interpret; particularly the economic implication of the difference between the Sharpe ratios of two portfolios is very difficult to explain. To address this problem Leah Modigliani and Franco Modigliani proposed a new measure called M^2 measure which is given as,

$$M^2 = R_{p^*} - R_m \quad \dots \qquad (6)$$

where M^2 is the Modigliani-Modigliani measure, R_{p^*} is the return of the adjusted portfolio and R_m is the market return.

The adjusted portfolio is the managed portfolio adjusted in such a way that its total risk is identical with the market portfolio. This portfolio is constructed as a weighted Dhar

combination of managed portfolio and risk-free asset where weights are given as:

$$w_1 = \frac{\sigma_m}{\sigma_p} \dots (7)$$

$$w_2 = 1 - w_1 \dots (8)$$

Where w_1 is the weight given to the managed portfolio which is equal to the ratio of standard deviation of the market portfolio (σ_m) and the standard deviation of the managed portfolio (σ_p) and w_2 is the weight of the risk-free asset which is equal to the one minus weight of the managed portfolio.

Plugging (6), (7) and (8) the ultimate expression for M² measure is given as

$$M^{2} = \left(\frac{\sigma_{m}}{\sigma_{p}}\right) * R_{p} + \left(1 - \frac{\sigma_{m}}{\sigma_{p}}\right) * R_{f} \dots (9)$$

The higher the M², superior is the performance of the managed portfolio or the mutual fund scheme.

(vii) **Sharpe differential return measure:** Sharpe differential return measure denoted by SH_p and is given as,

$$SH_p = R_p - \left[R_f + \frac{(R_m - R_f)\sigma_p}{\sigma_m} \right] \dots (10)$$

where, notations have their usual meaning.

This measure actually indicates the differential return earned by the managed portfolio or mutual fund scheme over the expected return for a given level of risk. Sharpe differential return measure takes into account both the selectivity skill of the fund manager as well as his ability to provide diversification. A positive Sharpe differential return indicates superior performance of the scheme. For a well-diversified portfolio Sharpe and Jensen differential return measure will be identical. However, if portfolio is not perfectly diversified then Sharpe measure will be smaller than the Jensen.

Data and Methodology

Data

The present study uses a sample of eighty mutual fund schemes. The details of these schemes are given in Table A-1.1 Out of eighty schemes the sample comprises of sixty six growth schemes and fourteen equity linked savings schemes (ELSS). Since balanced schemes of the sample are basically equity oriented, they are also treated as equity schemes. The data used in the study mainly comprise of monthly net asset values (NAV) for the eighty mutual funds

schemes during May 2000 to March 2012. These NAV data are collected from www.mutualfundsindia.com.This study has used different important stock indices namely, Sensex, BSE 200, S&P CNX 500 and S&P CNX Nifty as the benchmark indices for performance evaluation. These monthly indices data are collected from BSE and NSE websites. Monthly yield on 91 day treasury bills of GOI is used in the study as a proxy for risk-free return. These data are collected from RBI website.

Methodology

In this study performance of sample mutual funds schemes has been evaluated using seven theoretical or conventional performance evaluation measures during May 2000 to March 2012. In order to capture the impact of global financial and economic crisis (2008) on these conventional evaluation measures the study period is divided into two halves: pre-crisis period (May 2000 - December 2007) denoted as P_1 and post-crisis period (Jan 2009 - March 2012) denoted as P_2 .

At the outset, the returns for each of the sample schemes have been computed by using the following equation:

$$R_{t} = (NAV_{t} - NAV_{t-1} + D_{t})/NAV_{t-1}$$
(11)

where,

 $NAV_{t} = Net$ asset value of the scheme at the end of the month t

 $D_t = Dividend paid during the month t.$

Similarly, the returns for the market indices have been computed. The returns on the risk-free asset, i.e., the yields on 91-day T-bills are given on annual basis in the RBI website which are converted to the monthly basis.

All the theoretical performance evaluation measures i.e. Sharpe ratio, Treynor ratio, Jensen's Alpha, Information ratio, Appraisal ratio, Sharpe differential return measure and M^2 measure are computed on the basis of monthly returns of the schemes, that of the corresponding market indices and the monthly risk free rates during the period of the study (P_1 , P_2 and overall). In this context it may be mentioned here that except Information ratio for all other measures Sensex is used as a benchmark portfolio or overall market proxy. But in case of Information ratio benchmarks of the respective schemes are used as market proxy. In order to calculate the Information ratio, the first step is to find out the tracking error or the excess over the benchmark. The monthly excess returns of the schemes over their respective benchmarks are first calculated and then averaged over the relevant periods. The standard deviations of these monthly tracking error figures for a particular period provide the tracking error volatility. The ratio of average tracking error and tracking error volatility gives the Information ratio. In case

Dhar

of other measures, where standard deviation is used as a measure of total risk or fund beta is used as a measure of market risk the same procedure is followed for computation.

Empirical Results

Summary Statistics of Mutual Funds Return

The descriptive statistics of the monthly returns of the different categories of mutual funds schemes and their respective benchmarks during pre-crisis period, post-crisis period and overall period are given in tables 1-3. These tables depict that average return of growth schemes are higher followed by ELSS and balanced schemes during pre-crisis, post-crisis and overall period.

 Table 1 : Descriptive Statistics for monthly returns of mutual fund schemes according to investment objectives in the pre-crisis period

	ELSS	BALANCED	GROWTH	SENSEX	BSE200	CNX500	CNX
							NIFTY
Mean	0.026	0.022692571	0.02787296	0.01919	0.0125	-0.00167	0.018952
Median	0.0343	0.026355	0.03669946	0.02227	0.0241	-0.01736	0.024524
Maximum	0.3035	0.208133643	0.29925544	0.15742	0.1881	0.25904	0.175112
Minimum	-0.305	-0.151216571	-0.2202657	-0.1583	-0.264	-0.22707	-0.173988
Std.Dev.	0.1031	0.063979357	0.09319498	0.06845	0.084	0.09402	0.06974
Skewness	0.0288	-0.015518214	0.05087552	-0.4672	-0.782	0.69994	-0.406863
Kurtosis	5.0936	4.508429071	4.07128243	2.86358	3.7346	3.64585	3.075251

Source: Calculated by author

Table 2 : Descriptive Statistics for monthly returns of mutual fund schemes according to investment objectives in the Post-crisis Period

	ELSS	BALANCED	GROWTH	SENSEX	BSE200	CNX500	CNX
							NIFTY
Mean	0.0237	0.0221	0.0269	0.0179	0.019	-0.004	0.0177
Median	0.0179	0.0157	0.0295	0.0018	0.0056	0.0095	0.0055
Maximum	0.4396	0.3595	0.4744	0.2826	0.3236	0.1797	0.2807
Minimum	-0.103	-0.072	-0.128	-0.106	-0.104	-0.266	-0.102
Std.Dev.	0.0975	0.0754	0.1047	0.0768	0.0804	0.0794	0.0759
Skewness	2.542	2.8788	2.5179	1.1292	1.4533	-0.626	1.0854
Kurtosis	12.719	14.194	13.502	5.0205	6.5795	4.811	4.9577
		n	<u><u> </u></u>	1.1 .1			

Source: Calculated by author

Similarly, risks of the growth schemes are also higher than ELSS and balanced schemes. Growth and ELSS schemes (which invest at least 70% in equity shares) are expected to have higher returns with high risk. On the contrary, balanced schemes are expected to earn moderate returns with moderate risk. Thus, it can be inferred from the above tables that returns and risks are in conformity with the stated investment objectives of the sample mutual funds schemes.

Further, the results reveal that average monthly return of the ELSS schemes is 1% higher in

[79]

Performance Evaluation of Indian Mutual Funds Schemes with Respect...

			-				
	ELSS	BALANCED	GROWTH	SENSEX	BSE200	CNX500	CNX
							NIFTY
Mean	0.01655	0.01554807	0.018425	0.012614	0.014279	0.005302	0.012537
Median	0.02374	0.01872243	0.020937	0.012113	0.018099	-0.011024	0.015565
Maximum	0.34759	0.32488821	0.464365	0.282551	0.323612	0.368421	0.28066
Minimum	-0.324	-0.1817195	-0.281332	-0.238901	-0.26356	-0.266272	-0.264103
Std.Dev.	0.10532	0.07240821	0.101824	0.07666	0.082773	0.098308	0.077568
Skewness	0.13437	0.75278621	0.631564	-0.190084	-0.23828	0.730971	-0.268969
Kurtosis	7.10477	7.28582413	7.800435	3.873348	4.544417	4.389942	4.161302

Table 3 : Descriptive Statistics for monthly returns of mutual fund schemes according to investment objectives during overall period

Source: Calculated by author

the pre-crisis period and 0.71% higher in the post-crisis period than the overall period. The same is true for the pure growth schemes where average return is 1.2% higher in the pre-crisis period and 0.65% higher in the post-crisis period than the entire study period. These actually indicate that despite higher growth of the ELSS and growth schemes separately during pre-crisis and post-crisis periods they have performed so badly during the crisis period that ultimately pull down the overall average monthly return of those schemes. Moreover, the above tables display that performance of balanced fund schemes are better during the post-crisis period than the pre-crisis period and after balanced schemes perform better than ELSS and growth schemes.

Another important result to mention here is that the average return of the sample mutual fund schemes (growth, ELSS and balanced) have outperformed the market indices for all the periods. However, the standard deviations of the growth and ELSS schemes are also found to be higher than their respective benchmarks i.e. these schemes are riskier than their benchmarks which can be a worrying factor for the common investors.

Further, it is evident from the above tables that sample mutual funds schemes have shown positive skewness (except balanced scheme in post-crisis period) and leptokurtic return distribution which implies a few very high returns in the data series and presence of higher than normal frequency around extreme values in the return distribution.

Risk-adjusted Theoretical Performance Evaluation Measures

A closer look at the tables A-1 - A-3 of the Appendix I show that sample mutual funds schemes have performed quite well according to the Sharpe ratio during the overall period. Of the eighty mutual funds schemes under consideration there are seventy eight schemes for which Sharpe ratios are positive during overall period. Among these the top five performers

[80]

include two balanced and three growth schemes which are ICICI PRUDENTIAL BALANCED, HDFC EQUITY, RELIANCE VISION, HDFC PRUDENCE and RELIANCE GROWTH. Nevertheless, the performance of sample schemes during pre-crisis and post-crisis periods are very poor than the overall period.

The results relating to the Treynor ratio also reflect the same kind of findings for the mutual funds schemes under consideration as in case of Sharpe ratio for the overall period. Tables A-1 - A-3 show that Treynor ratios for seventy-nine schemes are positive during the overall period. The top five schemes are ICICI PRUDENTIAL FMCG, SBI MAGNUM SECTOR FUNDS UMBRELLA – CONTRA, SUNDARAM BALANCED, RELIANCE VISION and TATA LIFE SCIENCES & TECHNOLOGY.

The results pertaining to Jensen measure as given in tables A-1 - A-3 in the Appendix I indicate that out of eighty schemes alpha values of twenty schemes are positive and significant at 5% level during the entire study period. This means these mutual funds schemes have generated superior returns than the benchmark return. The corresponding figures for the pre-crisis and post-crisis periods are twenty nine and twenty three respectively. Thus, Indian fund managers, in general, cannot outperform the benchmark return, only some of the fund managers possess superior stock selection skills. Further, the global financial crisis also affected the performance of mutual funds schemes.

Information ratio is a widely used measure for comparing the active management skills of the fund managers. The higher the information ratio; the better will be the managerial performance. It is evident from tables A-1- A-3 that thirty nine mutual funds schemes possess positive Information ratio during all the periods indicating that fund managers of these schemes outperformed the corresponding benchmark indices. The top five performers are HDFC TOP 200, HDFC EQUITY, HDFC TAXSAVER, RELIANCE GROWTH and DSP BLACKROCK OPPORTUNITIES. Also, it is found that financial crisis did not affect the performance of the sample mutual funds schemes measured in terms of this ratio.

The results based on Sharpe differential return measure as revealed by tables A -1 - A-3 in the appendix document that of the eighty schemes under consideration forty eight schemes have positive differential returns thereby indicating superior performance during overall period. The top five performers are RELIANCE VISION, HDFC EQUITY, JM EQUITY, ICICI PRUDENTIAL BALANCED and RELIANCE GROWTH. The remaining thirty two schemes have shown negative differential returns implying that they could not earn superior returns according to the risk they assumed. It is also found that in the pre-crisis period the number of superior performers is thirty-six while in the post-crisis period the overall differential return performance of the mutual funds schemes was affected despite their

good performance in the post-crisis period.

It can be inferred from tables A-1 - A-3 that performance of sample mutual funds schemes according to the Appraisal ratio is more or less same for all the periods, i.e. pre-crisis, post-crisis and overall period. Out of eighty sample schemes there are fifty six schemes which have shown positive Appraisal ratio. Thus, as in the Sharpe differential return measure here also majority of the schemes (70%) have outperformed the market. The top five schemes as per this method are HDFC TOP 200, FT INDIA BALANCED, FRANKLIN INDIA PRIMA PLUS, HDFC TAX SAVER and FRANKLIN INDIA BLUECHIP. The remaining twenty four schemes which have negative Appraisal ratio indicating that they failed to earn sufficient return commensurate with their unsystematic risk.

Sample mutual funds schemes have performed most efficiently in respect of M² measure compared to other performance evaluation measures. This is because seventy-nine mutual funds schemes out of eighty have positive M² measure during the overall period. The best five schemes according to this measure are RELIANCE VISION, FRANKLIN INDIA PRIMA, RELIANCE GROWTH, ICICI PRUDENTIAL TAXPLAN and HDFC EQUITY. However, the performance of mutual funds schemes during pre-crisis and post-crisis periods is worse than the overall period.

Based on the preceding analysis it can be inferred that among the superior performers the top five schemes according to all the performance evaluation criterion (multi criteria conformity) suggested by table A- 4 in the Appendix I during the overall period are RELIANCE VISION, RELIANCE GROWTH, HDFC PRUDENCE, HDFC TAXSAVER and HDFC TOP 200. Thus these top five performers consist of three growth schemes, one balanced scheme and one ELSS scheme. Nevertheless, these five schemes mainly belong to two AMCs Reliance and HDFC.

Similarly, table A- 5 of Appendix I indicates that the worst five schemes for the overall period are BARODA PIONEER ELSS 96, UTI ENERGY FUND, JM BASIC FUND, SAHARA TAX GAIN, JM BALNCED, TAURUS DISCOVERY and UTI TOP 100 FUND among which the last three schemes conformed to equal number of evaluation criterion. Again, among these worst schemes there are three growth schemes, two balanced schemes and one ELSS scheme.

Conclusion

In this chapter performance of sample mutual funds schemes has been evaluated using seven theoretical or conventional performance evaluation measures during May 2000 to March 2012. Besides, to capture the impact of global financial and economic crisis (2008) on these conventional evaluation measures the study period is divided into two halves: pre-crisis period

(May 2000 - December 2007) and post-crisis period (Jan 2009 - March 2012).

The findings of this study lead to the following conclusions:

First, it can be inferred from the empirical results that returns and risks of the sample mutual funds schemes are in conformity with their stated investment objectives.

Second, in spite of higher average return of the ELSS and growth schemes separately during pre-crisis and post-crisis periods they have performed so badly during the crisis period that ultimately pull down the overall average monthly return of those schemes. So, the global financial crisis has affected the performance of Indian mutual funds schemes which had larger exposure in equity shares.

However, with respect to various risk-adjusted performance measures the impact of financial crisis on the Indian mutual funds industry is not conclusive.

Third, the average return of the sample mutual fund schemes (growth, ELSS and balanced) have outperformed the market indices for all the periods. However, the standard deviations of the growth and ELSS schemes are also found to be higher than their respective benchmarks i.e. these schemes are riskier than their benchmarks which can be a worrying factor for the common investors.

Fourth, it is evident from the findings that mutual funds schemes have shown positive skewness (except balanced scheme in post-crisis period) and leptokurtic return distribution which implies a few very high returns in the data series and presence of higher than normal frequency around extreme values in the return distribution.

Fifth, based on the multi criteria conformity the top five schemes during the overall period are RELIANCE VISION, RELIANCE GROWTH, HDFC PRUDENCE, HDFC TAXSAVER and HDFC TOP 200. Thus, these top five performers consist of three growth schemes, one balanced scheme and one ELSS scheme. Nevertheless, these five schemes mainly belong to two asset management companies (AMCs) Reliance and HDFC, out of forty one AMCs which is currently in vogue in the Indian capital market. This is not an encouraging finding in respect of the performance of the Indian mutual funds industry as a whole. The worst five schemes for the overall period are BARODA PIONEER ELSS 96, UTI ENERGY FUND, JM BASIC FUND, SAHARA TAX GAIN, JM BALNCED, TAURUS DISCOVERY and UTI TOP 100 FUND among which the last three schemes conformed to equal number of evaluation criterion.

Finally, it can be concluded that RELIANCE VISION and RELIANCE GROWTH schemes are two best performers among all the schemes of the sample as they are performed well in terms of all the theoretical performance evaluation measures.

Performance Evaluation of Indian Mutual Funds Schemes with Respect...

Limitations of the present study

In the present study performance of mutual fund schemes has been evaluated using domestic stock market index as the benchmark portfolio or market proxy (in absolute sense) or by comparing the rank of different sample mutual fund schemes based on different measures (in relative sense). But whether Indian mutual funds industry has performed well in comparison with mutual funds of other emerging markets (Brazil, Russia, China, South Korea etc.) or the developed capital markets has not been studied here. This study has used macroeconomic factors for evaluating performance of mutual fund schemes. However, different microeconomic information or firm specific factors may also affect performance of mutual fund schemes which have not been considered in the present study.

End Note:

1. Momentum strategy is a strategy of buying stocks that were past winners and selling stocks that were past losers.

References

- 1. Anand, S., & V. Murugaiah. (2006). Analysis of components of investment performance An empirical study of mutual funds in India. Paper presented at 10th Indian Institute of Capital Markets Conference, in Hyderabad, India.
- 2. Chander, R. (2002). Performance appraisal of mutual funds in India. New Delhi: Excel Books.
- 3. Chakrabarti, A., & H. Rungta (2000). Mutual funds industry in India: An in-depth look into the problems of credibility, risk and brand. *ICFAI Journal of Applied Finance*. 6(2). 26-46.
- 4. Carhart, M. M. (1997). On persistence in mutual fund performance. *Journal of Finance* 52(1).57-82.
- 5. Fama, E. F., andK. R. French. (1993). Common risk factor in the return on stocks and bonds. *Journal of Financial Economics* 33. 3-56.
- 6. Gupta, A. (2001). Mutual funds in India: A study of investment management. *Finance* India. 15(2). 631-637.
- 7. Gupta, O.P., &S. Sehgal. (2001). Investment performance of mutual funds: The Indian experience. InU. Shashikant and S. Arumugam (Eds.), Indian Capital Markets: Trends and Dimensions, Tata McGraw-Hill., pp 1-41.
- 8. Jayadev, M. (1996). Mutual fund performance: An analysis of monthly returns. *Finance India*.10(1). 73-84.

Dhar

- 9. Kulkarni, V. (1998). Fund evaluation at CRISIL. In InTushar Waghmare (Ed.) The Future of Fund Management in India, Tata McGraw Hills, pp 33-35.
- Lintner, J. (1965). The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. *Review of Economics and Statistics* 47(1).13-37.
- 11. Markowitz, H. (1952). Portfolio selection. Journal of Finance 7(1).77-91.
- 12. Mossin, J. (1966). Equilibriumin a capital asset market. *Econometrica*. 34(4). 768-783.
- 13. Roll, R. (1977). A critique of the asset pricing theory's tests part I: On past and potential testability of the theory. *Journal of Financial Economics*. 4(2).129-176.
- 14. Ross, S.A. (1976). The arbitrage theory of capital asset pricing. *Journal of Economic Theory*. 13. 341-360.
- Sharpe, W.F. (1966). Mutual fund performance. *Journal of Business* 39(1). 119-38.
- Thomas, S. 1998. Performance evaluation of Indian funds. In Tushar Waghmare(Ed.) The Future of Fund Management in India, Tata McGraw Hills, pp 23-31.

Performance Evaluation of Indian Mutual Funds Schemes with Respect...

Appendix Details of Sample Mutual Fund Schemes

Table A-1.1 : Objective and Benchmark Indices corresponding to different mutual fund schemes

Sl. No.	Name of the Scheme	Benchmark	Objective
1.	Baroda Pioneer ELSS 96	Sensex	ELSS
2.	Birla Sun Life 95	Sensex	G
3.	Birla Sun Life Advantage Fund	Sensex	G
4.	Birla Sun Life buy India Fund	BSE 200	G
5.	Birla Sun Life Equity Fund	BSE 200	G
6.	Birla Sun Life India Opportunities Fund	BSE 200	G
7.	Birla Sun Life MNC Fund	BSE 200	G
8.	Birla Sun Life New Millennium	BSE 200	G
9.	Canara Robeco Balance	S&P CNX Nifty	В
10.	DSP BlackRock Balanced Fund	S&P CNX Nifty	В
11.	DSP BlackRock Opportunities Fund	BSE 200	G
12.	DSP BlackRock Technology.com Fund	BSE 200	G
13.	Escorts Tax Plan	S&P CNX Nifty	ELSS
14.	Franklin India Bluechip	Sensex	G
15.	Franklin India Opportunity Fund	BSE 200	G
16.	Franklin India Prima Fund	BSE 200	G
17.	Franklin India Prima Plus	BSE 200	G
18.	Franklin India Taxshield	BSE 200	ELSS
19.	Franklin Infotech Fund	BSE 200	G
20.	FT India Balanced Fund	S&P CNX Nifty	В
21.	HDFC Balanced Fund	S&P CNX Nifty	В
22.	HDFC Capital Builder Fund	BSE 200	G
23.	HDFC Equity Fund	BSE 200	G
24.	HDFC Growth Fund	Sensex	G
25.	HDFC Prudence Fund	S& P CNX Nifty	В
26.	HDFC Taxsaver	BSE 200	ELSS
27.	HDFC Top 200	BSE 200	G
28.	ICICI Prudential Balanced	S& P CNX Nifty	В
29.	ICICI Prudential FMCG	BSE 200	G
30.	ICICI Prudential Taxplan	BSE 200	ELSS
31.	ICICI Prudential Top 100 Fund	S& P CNX Nifty	G
32.	ICICI Prudential Top 200 Fund	BSE 200	G
33.	ICICI Prudential Technology Fund	BSE 200	G
34.	ING Balanced Fund	S& P CNX Nifty	В
35.	ING Core Equity Fund	BSE 200	G

Dh	ıar
----	-----

Sl. No.	Name of the Scheme	Benchmark	Objective
36.	JM Balanced	BSE 200	В
37.	JM Basic Fund	BSE 200	G
38.	JM Equity	Sensex	G
39.	Kotak 50	S& P CNX Nifty	G
40.	Kotak Balance	S& P CNX Nifty	В
41.	L&T Opportunities Fund	BSE 200	G
42.	LIC Nomura Equity Fund	Sensex	G
43.	LIC Nomura MF Growth Fund	Sensex	G
44.	LIC Nomura Tax Plan	Sensex	ELSS
45.	PRINCIPAL Balanced Fund	S& P CNX Nifty	В
46.	PRINCIPAL Index Fund	S& P CNX Nifty	G
47.	PRINCIPAL Growth Fund	BSE 200	G
48.	Reliance Growth	BSE 100	G
49.	Reliance Vision	BSE 100	G
50.	Sahara Taxgain	BSE 200	ELSS
51.	SBI Magnum Balanced Fund	S& P CNX Nifty	В
52.	SBI Magnum Equity Fund	S& P CNX Nifty	G
53.	SBI Magnum Global Fund 94	BSE 200	G
54.	SBI Magnum Multiplier Plus 93	BSE 200	G
55.	SBI Magnum Sector Funds Umbrella –	BSE 200	G
	Contra		
56.	SBI Magnum Sector Funds Umbrella –	BSE 200	G
	Pharma		
57.	SBI Magnum Tax Gain Scheme 93	BSE 100	ELSS
58.	Sundaram Balanced Fund	S& P CNX Nifty	В
59.	Sundaram Growth Fund	BSE 200	G
60.	Sundaram Taxsaver	BSE 200	ELSS
61.	Tata Balanced Fund	S& P CNX Nifty	В
62.	Tata Ethical Fund	BSE 200	G
63.	Tata Life Sciences and Technology Fund	BSE 200	G
64.	Tata Pure Equity Fund	Sensex	G
65.	Tata Tax Saving Fund	Sensex	ELSS
66.	Taurus Bonanza Fund	BSE 100	G
67.	Taurus Discovery Fund	BSE 200	G
68.	Taurus Starshare Fund	BSE 200	G
69.	Taurus Taxshield	BSE 200	ELSS
70.	Templeton India Growth Fund	Sensex	G
71.	UTI Balanced Fund	S& P CNX Nifty	В

Sl. No.	Name of the Scheme	Benchmark	Objective
73.	UTI Equity Fund	BSE 100	G
74.	UTI Equity Tax Savings Plan	BSE 100	ELSS
75.	UTI Masterplus Unit Scheme 91	Sensex	G
76.	UTI MNC Fund	BSE 200	G
77.	UTI Pharma and Healthcare Fund	BSE 200	G
78.	UTI Nifty Fund	S& P CNX Nifty	G
79.	UTI Top 100 Fund	BSE 200	G
80.	UTI Services Industries Fund	S& P CNX Nifty	G

Performance Evaluation of Indian Mutual Funds Schemes with Respect...

G-Growth, B-Balanced, ELSS - Equity linked savings scheme

Table A-1 : Performance of mutual fund schemes with respect to risk-adjusted theoretical performance evaluation measures in the pre-crisis period (arranged as per best to worst performer)

Sc h.	S _R	Sc h.	Jα	Sc h.	T _R	Sc h.	IR	Sc h.	AR	Sc h.	SHp	Sc h.	M ²
Ν		Ν		Ν		Ν		No		No		No	
0.	0.98105	0. 55	0.03429	0. 36	0.86023	0 11	0.41482	27	0.57733	36	0.08090	36	0.07984
36		55		30		11		27		30		30	
25	0.30252	29	0.02621	66	0.28156	27	0.40651	25	0.56398	16	0.03003	16	0.03655
49	0.27307	48	0.02035	49	0.26794	48	0.35237	23	0.52961	66	0.02754	66	0.03272
16	0.27052	58	0.01956	55	0.20964	49	0.32462	17	0.46383	49	0.02606	55	0.03038
66	0.25621	49	0.01902	48	0.19266	26	0.30021	26	0.46383	55	0.02063	49	0.02827
23	0.21714	25	0.01611	72	0.18287	23	0.29078	20	0.45137	48	0.01940	48	0.02235
55	0.21293	63	0.01598	70	0.13909	70	0.28981	49	0.43167	72	0.01924	1	0.02050
27	0.18940	23	0.01422	29	0.11727	16	0.27871	11	0.43066	25	0.01920	23	0.02033
48	0.18340	26	0.01328	74	0.10556	14	0.26182	48	0.41473	23	0.01905	27	0.01881
26	0.15141	20	0.01304	47	0.09750	59	0.21815	55	0.39621	27	0.01745	25	0.01787
1	0.14206	66	0.01255	32	0.09704	64	0.21804	10	0.37480	30	0.01534	30	0.01747
21	0.14106	27	0.01105	69	0.09537	20	0.21602	58	0.36678	26	0.01419	26	0.01489
70	0.136383	24	0.01062	77	0.08351	30	0.21527	29	0.34047	70	0.01328	11	0.01330
30	0.13558	16	0.01031	56	0.07846	5	0.20479	9	0.32839	11	0.012549	32	0.01105
72	0.12628	17	0.01031	59	0.06303	24	0.20457	70	0.32831	74	0.01154	47	0.01088
11	0.11600	30	0.01023	58	0.06160	7	0.20204	28	0.32058	69	0.01142	24	0.01058
20	0.11579	14	0.00999	40	0.06089	13	0.18790	61	0.31658	32	0.01044	56	0.00904
77	0.10932	7	0.00988	71	0.05484	66	0.17976	14	0.30132	47	0.01024	13	0.00882

Dhar	

Sc	S _R	Sc	Jα	Sc	T _R	Sc	IR	Sc	AR	Sc	SHp	Sc	M ²
h. N		h. N		h. N		h. N		h. No		h. No		h. No	
0. 47	0.10600	0. 70	0.00977	0. 60	0.05180	0 31	0.17261	59	0.28440	24	0.00952	20	0.00833
32	0.10318	68	0.00973	61	0.04531	25	0.17011	32	0.27893	20	0.00917	59	0.00830
58	0.09826	11	0.00874	65	0.03367	32	0.15413	7	0.26777	21	0.00897	60	0.00742
24	0.09194	71	0.00869	64	0.03359	78	0.15413	47	0.26363	56	0.008693	18	0.00737
40	0.09165	32	0.00862	16	0.03261	39	0.13681	21	0.25738	13	0.00788	7	0.00653
28	0.09091	9	0.00861	73	0.03132	22	0.13437	71	0.25465	59	0.00754	22	0.00636
56	0.08979	10	0.00844	25	0.02923	76	0.13245	30	0.23361	18	0.00715	58	0.00622
10	0.08662	61	0.00828	23	0.02129	18	0.12127	22	0.23208	60	0.00704	28	0.00607
71	0.08235	4	0.00823	27	0.01736	62	0.10237	31	0.23028	28	0.006752	40	0.00603
13	0.07515	64	0.00786	1	0.01518	47	0.10124	76	0.22801	58	0.00660	10	0.00600
69	0.07235	28	0.00774	26	0.01456	38	0.07197	18	0.22583	10	0.00656	9	0.00544
9	0.07038	76	0.00764	30	0.01367	53	0.03890	66	0.22103	40	0.00641	31	0.00541
59	0.06401	21	0.00717	21	0.01352	29	0.03189	64	0.21120	7	0.00627	65	0.00520
18	0.06235	2	0.007	20	0.01074	61	0.02432	63	0.19270	22	0.00603	61	0.00502
7	0.06059	47	0.00697	11	0.01072	60	0.02198	5	0.19199	71	0.00600	64	0.00494
61	0.05944	36	0.00694	28	0.00840	65	0.02130	2	0.18657	2	0.00574	2	0.00396
22	0.04809	72	0.00636	24	0.00837	58	0.01573	68	0.17990	9	0.00559	5	0.00308
60	0.04424	59	0.00631	10	0.00793	10	0.01415	78	0.17562	61	0.00528	70	0.00062
31	0.04085	5	0.00626	9	0.00660	69	0.01392	4	0.16004	31	0.00527	77	0.00039
73	0.03268	6	0.00626	18	0.00580	9	0.01376	40	0.15866	65	0.00506	75	0.00037
2	0.03189	31	0.00614	13	0.00556	3	0.01219	16	0.15254	64	0.00482	72	0.00036
64	0.03015	40	0.00580	7	0.00533	2	0.00057	39	0.14136	73	0.00465	74	0.00034
65	0.02722	39	0.00515	22	0.00483	55	-0.00012	45	0.11764	42	0.00074	29	0.00031
5	0.01029	56	0.00511	2	0.00309	74	-0.00059	38	0.11386	79	0.00028	45	0.00027
42	-0.01572	18	0.00485	5	0.00097	17	-0.00223	6	0.10192	14	6.03E-05	69	0.00026
79	-0.01801	38	0.00484	14	- 0.00201	75	-0.00300	36	0.08982	45	-6.6E-05	73	0.00026
14	-0.02298	51	0.00419	17	- 0.00223	67	-0.00330	56	0.08943	38	-0.00014	76	0.00024
17	-0.02382	45	0.00408	6	- 0.00313	42	-0.00338	51	0.07854	76	-0.00015	79	0.00020
ι	I	1	1	1	1	1	I	1	1	1	TT 11	4.1.	Continued

Sc	S_R	Sc	Jα	Sc	T _R	Sc	IR	Sc	AR	Sc	SHp	Sc	M ²
h. N		h. N		h. N		h. N		h. N		h. N		h. N	
0.		0.		0.		0		0		0		0	
45	-0.02410	62	0.00296	4	-0.00385	28	-0.00662	13	N.A.	17	-0.00021	17	6E-05
38	-0.02461	69	0.00296	3	-0.00712	4	-0.00695	62	0.07236	29	-0.00033	42	6.25E-06
29	-0.02476	60	0.00256	15	-0.00926	15	-0.0085	72	0.04916	63	-0.00052	78	-4E-06
76	-0.026744	3	0.00149	12	-0.01022	12	-0.01513	60	0.04095	78	-0.00081	80	-3.4E-05
63	-0.027348	74	0.00122	8	-0.01316	71	-0.01713	3	0.03505	6	-0.00086	14	-0.00027
6	-0.02903	43	0.00102	19	-0.01723	54	-0.02915	69	0.03381	62	-0.00115	71	-0.00034
78	-0.03222	78	0.00090	42	-0.01831	45	-0.03010	74	0.02972	5	-0.00138	63	-0.00055
62	-0.03262	73	0.00062	79	-0.01850	63	-0.03283	43	0.01903	75	-0.00146	4	-0.00066
4	-0.03280	75	0.00050	45	-0.02113	43	-0.03990	73	0.01816	46	-0.00152	38	-0.00084
68	-0.03782	44	0.00039	76	-0.02470	73	-0.06319	75	0.01677	68	-0.00179	46	-0.0018
46	-0.04085	65	0.00032	38	-0.02612	57	-0.06630	44	0.00686	3	-0.00222	62	-0.00206
75	-0.04113	67	-0.00023	63	-0.026963	44	-0.06889	65	0.00604	37	-0.00295	6	-0.00216
37	-0.04345	77	-0.00025	78	-0.03216	51	-0.07718	67	-0.00379	44	-0.00323	68	-0.00328
44	-0.06106	46	-0.00086	62	-0.03721	52	-0.07863	77	-0.00493	39	-0.00374	39	-0.00445
39	-0.06348	42	-0.00090	46	-0.04028	8	-0.08023	42	-0.02088	4	-0.00453	44	-0.00452
53	-0.06842	34	-0.00125	75	-0.04290	79	-0.08098	12	-0.03062	53	-0.00468	34	-0.005
3	-0.07767	79	-0.00154	68	-0.04298	73	-0.09144	34	-0.03487	43	-0.00593	51	-0.00584
50	-0.08309	12	-0.00202	37	-0.06168	6	-0.09747	53	-0.04010	34	-0.0061	53	-0.00679
43	-0.09154	52	-0.00211	44	-0.06680	56	-0.09824	79	-0.04010	51	-0.00633	3	-0.00682
57	-0.09286	53	-0.00211	39	-0.06874	72	-0.10669	52	-0.04572	15	-0.00768	37	-0.00763
12	-0.09331	15	-0.00221	53	-0.07506	35	-0.11140	15	-0.05301	52	-0.008	43	-0.00852
15	-0.09442	33	-0.00533	34	-0.09167	40	-0.11286	33	-0.06672	12	-0.00819	15	-0.00987
33	-0.10329	54	-0.00563	51	-0.09514	1	-0.11510	8	-0.07709	57	-0.00864	52	-0.01001
51	-0.10514	57	-0.00597	43	-0.10103	50	-0.11748	57	-0.07898	33	-0.00946	12	-0.01184
34	-0.10593	8	-0.0060	52	-0.11899	21	-0.13019	50	-0.10748	50	-0.00968	57	-0.01237
8	-0.11006	41	-0.00745	57	-0.12372	37	-0.13749	1	-0.10972	8	-0.0105	33	-0.01386
52	-0.11043	1	-0.00755	33	-0.13329	36	-0.14406	37	-0.12063	67	-0.01051	8	-0.01521
67	-0.11725	13	-0.00944	67	-0.14140	19	-0.16473	54	-0.12685	80	-0.01149	67	-0.01603
80	-0.13380	80	-0.00985	50	-0.14271	34	-0.17468	19	-0.14765	19	-0.0137	50	-0.01789

Performance Evaluation of Indian Mutual Funds Schemes with Respect...

Sc	S _R	Sc	Jα	Sc	T _R	Sc	IR	Sc	AR	Sc	SHp	Sc	M ²
h.		h.		h.		h.		h.		h.		h.	
Ν		Ν		Ν		Ν		Ν		Ν		Ν	
0.		0.		0.		0		0		0		0	
19	-0.13465	35	-0.01158	80	-0.15137	77	-0.19188	41	-0.15888	54	-0.01438	54	-0.01855
54	-0.15011	37	-0.01178	41	-0.18656	41	-0.20668	35	-0.19125	1	-0.01484	19	-0.01942
35	-0.15396	19	-0.01268	54	-0.18766	80	-0.20702	80	-0.20733	41	-0.01531	42	-0.01959
41	-0.17699	50	-0.01371	35	-0.20619	46	-0.31063	46	-0.23085	35	-0.01617	35	-0.02208

Source: Calculated by author

Note: Sch. No. stands for Scheme No. representing the same schemes as given in Table A- 1.1.

Table A-2 : Performance of mutual fund schemes with respect to risk-adjusted theoretical performance evaluation measures in the post-crisis period (arranged as per best to worst performer)

Sc	S _R	Sc	Jα	Sc	T _R	Sc	IR	Sc	AR	Sc	SHp	Sc	M ²
h.		h.		h.		h.		h.		h.		h.	
No		Ν		Ν		Ν		Ν		Ν		Ν	
•	0.04050	0.	0.00070	0.		0	0.0404	0	0.40540	0	0.00047	0	0.00005
54	-0.01656	57	0.00276	31	-0.00185	57	-0.0134	48	0.12549	19	-0.00017	15	0.00025
56	-0.01663	74	0.00253	11	-0.00185	61	-0.0165	75	0.10952	57	-0.00018	31	0.00024
11	-0.01672	71	0.00247	36	-0.00185	32	-0.0204	4	0.09846	75	-0.00018	13	0.00022
18	-0.01674	34	0.00247	60	-0.00185	49	-0.0241	69	0.09561	51	-0.00022	78	0.00020
25	-0.01674	48	0.00244	18	-0.00186	5	-0.0274	80	0.08691	60	-0.00022	80	0.00020
75	-0.01676	79	0.00225	15	-0.00187	58	-0.0302	49	0.08543	31	-0.00021	10	0.0002
4	-0.01685	69	0.00205	32	-0.00187	28	-0.0421	8	0.08337	11	-0.00022	45	0.00017
62	-0.01688	39	0.00192	35	-0.00188	35	-0.0571	53	0.05594	32	-0.00022	14	0.00015
47	-0.01696	3	0.00149	62	-0.00190	10	-0.0583	79	0.03255	18	-0.00022	48	0.00015
17	-0.01793	49	0.00149	39	-0.00190	37	-0.0665	47	0.01681	62	-0.00022	51	0.00010
58	-0.01799	80	0.00148	76	-0.00192	3	-0.0897	15	0.00214	76	-0.00023	11	0.00010
72	-0.01833	75	0.00119	54	-0.00193	75	-0.0899	45	0.00035	15	-0.00024	32	9.96E-05
74	-0.01837	47	0.00028	47	-0.00193	71	-0.1007	60	-0.00928	35	-0.00024	61	7.92E-05
51	-0.01870	15	1.84E-05	19	-0.00197	74	-0.104	68	-0.01105	39	-0.00025	75	7.8E-05
31	-0.01878	45	0.00006	17	-0.00199	39	-0.1056	46	-0.03465	45	-0.00025	46	7.71E-05

Table A-2 Continued

[91]

Sc h. No	S _R	Sc h. N	Ja	Sc h. N	T _R	Sc h. N	IR	Sc h. N	AR	Sc h. N	SHp	Sc h. N	M ²
110		0.		0.		0		0		0		0	
. 63	-0.01917	46	-0.00007	71	-0.00207	66	-0.1066	51	-0.04938	36	-0.00026	59	6.96E-05
39	-0.01923	60	-0.00018	74	-0.00207	20	-0.1097	41	-0.05143	54	-0.00026	58	6.62E-05
73	-0.01941	68	-0.00035	2	-0.00209	34	-0.1379	55	-0.06245	56	-0.00027	18	3.24E-05
45	-0.01945	78	-0.00041	21	-0.00211	55	-0.1472	59	-0.09501	47	-0.00031	40	2.56E-05
9	-0.020384	51	-0.00086	10	-0.00211	60	-0.1556	67	-0.10965	9	-0.00032	66	-2.4E-05
21	-0.02038	41	-0.00103	56	-0.00213	59	-0.1568	66	-0.10981	21	-0.00032	52	-8.7E-05
65	-0.02045	59	-0.00182	34	-0.00217	45	-0.1626	43	-0.12581	71	-0.00036	53	-0.00011
71	-0.02116	43	-0.00208	72	-0.00217	79	-0.1689	72	-0.14698	74	-0.00037	34	-0.00014
64	-0.02129	66	-0.00209	73	-0.00222	65	-0.1803	40	-0.16375	72	-0.00040	67	-0.00015
34	-0.02174	44	-0.00252	20	-0.00225	13	-0.1838	1	-0.22822	34	-0.00040	36	-0.00019
79	-0.02176	42	-0.00281	4	-0.00234	47	-0.1877	13	-0.24144	73	-0.00043	37	-0.0002
10	-0.02239	72	-0.00328	40	-0.00236	15	-0.2022	44	-0.2604	10	-0.00043	64	-0.00024
20	-0.02260	65	-0.00339	63	-0.00240	46	-0.2051	78	-0.2609	40	-0.00044	65	-0.00031
40	-0.02281	36	-0.00371	61	-0.00263	1	-0.2113	42	-0.28413	20	-0.00044	49	-0.00047
76	-0.02361	1	-0.00380	28	-0.00279	72	-0.2548	38	-0.3812	63	-0.00048	7	-0.00054
29	-0.02475	40	-0.00413	77	-0.00430	38	-0.2731	37	-0.43762	79	-0.00055	4	-0.00072
61	-0.02570	67	-0.00496	55	-0.00840	40	-0.2879	3	NA	61	-0.00057	5	-0.00092
77	-0.02635	13	-0.00944	58	-0.00958	42	-0.31	5	NA	28	-0.00063	77	-0.00108
5	-0.02675	38	-0.00972	46	-0.01617	36	-0.3233	10	NA	29	-0.00066	55	-0.00112
3	-0.02707	55	-0.01313	45	-0.01630	78	-0.3314	36	NA	77	-0.00070	74	-0.002
28	-0.02718	37	-0.02096	29	-0.02308	44	-0.3511	52	NA	1	-0.00217	79	-0.01433

Performance Evaluation of Indian Mutual Funds Schemes with Respect...

Source: Calculated by author

Note: Sch. No. stands for Scheme No. representing the same schemes as given in Table A- 1.1.

Dhar

Table A-3 : Performance of mutual fund schemes with respect to risk-adjusted theoretical performance evaluation measures during overall period (arranged as per best to worst performer)

	per best to worst performer)													
Sc h. N o.	S _R	Sc h. N o.	Jα	Sc h. N o.	T _R	Sc h. N o	IR	Sc h. N o	AR	Sc h. N o	SHp	Sc h. N o	M ²	
28	0.89063	32	0.21512	29	0.49051	27	0.43426	27	0.34830	49	0.02448	49	0.04042	
23	0.58235	33	0.13021	55	0.26663	23	0.32097	20	0.33266	23	0.01882	16	0.03136	
49	0.40593	34	0.12652	58	0.09664	26	0.28989	17	0.32082	38	0.01460	48	0.03114	
25	0.29681	35	0.10594	49	0.04490	48	0.28765	26	0.31660	28	0.01219	30	0.02745	
46	0.26536	36	0.05767	63	0.03269	11	0.26581	14	0.296062	48	0.01145	23	0.02643	
26	0.26390	37	0.01982	25	0.03059	70	0.25024	48	0.27966	25	0.01081	68	0.02550	
29	0.26343	25	0.01372	48	0.02949	49	0.24900	10	0.27532	26	0.00980	27	0.02544	
27	0.26212	48	0.01346	23	0.02867	30	0.22478	49	0.27513	27	0.00948	26	0.02469	
21	0.25337	49	0.01233	26	0.02809	16	0.21911	25	0.27259	20	0.00926	24	0.02383	
10	0.24552	16	0.01219	27	0.02736	25	0.19918	21	0.26484	40	0.00887	70	0.02379	
24	0.24448	29	0.01214	77	0.02722	24	0.19465	24	0.24217	16	0.00865	53	0.02344	
7	0.23953	26	0.01136	61	0.02705	7	0.19263	70	0.23953	30	0.00786	5	0.02292	
16	0.23693	27	0.01118	16	0.02674	14	0.18568	61	0.22771	29	0.00774	11	0.02263	
9	0.23595	55	0.01093	30	0.02569	70	0.17311	9	0.22716	7	0.00729	64	0.02228	
66	0.23511	30	0.01038	21	0.02529	18	0.16429	11	0.22645	24	0.00708	22	0.02191	
30	0.23472	17	0.00931	24	0.02464	31	0.15901	28	0.21612	70	0.00701	14	0.02187	
20	0.23422	20	0.00903	4	0.02428	20	0.15570	18	0.21514	11	0.00646	62	0.02163	
76	0.22707	7	0.00848	22	0.02423	22	0.14248	7	0.20871	21	0.00645	69	0.02090	
11	0.22634	14	0.00843	10	0.02420	5	0.12882	30	0.20536	22	0.00604	59	0.02089	
84	0.22426	22	0.00822	9	0.02381	76	0.12857	16	0.19142	14	0.00595	32	0.02046	
22	0.22261	24	0.00816	17	0.02369	32	0.11549	64	0.19044	10	0.00591	18	0.02011	
70	0.21971	11	0.00795	11	0.02359	17	0.10027	32	0.19029	9	0.00580	7	0.02001	
18	0.21946	70	0.00795	56	0.02353	66	0.09903	31	0.18849	61	0.00560	25	0.01996	
19	0.21946	76	0.00733	20	0.02336	68	0.09870	22	0.18311	76	0.0056	33	0.01955	
14	0.21865	18	0.00683	32	0.023017	59	0.08913	58	0.18207	18	0.00551	12	0.01944	
17	0.21762	9	0.00673	18	0.02297	39	0.08198	76	0.18202	70	0.00531	54	0.01916	
2	0.21619	10	0.00672	2	0.02293	62	0.07459	2	0.17389	17	0.00525	66	0.01896	
	1	1	1	1		1		1		1	l	1		

Sc	S _R	Sc	Jα	Sc	T _R	Sc	IR	Sc	AR	Sc	SHp	Sc	M ²
h. N		h. N		h. N		h. N		h. N		h. N		h. N	
0.		0.		0.		0		0		0		0	
32	0.21512	4	0.00671	28	0.02254	78	0.06699	29	0.15761	31	0.00477	31	0.01885
31	0.20835	77	0.00666	70	0.02234	9	0.05892	71	0.14323	32	0.00476	60	0.01872
4	0.20374	21	0.00649	14	0.02182	53	0.05617	4	0.13444	2	0.00461	17	0.01869
58	0.19881	64	0.00642	7	0.02175	10	0.04623	59	0.13332	71	0.00386	39	0.01864
71	0.19415	61	0.00631	71	0.02055	2	0.04126	5	0.13309	4	0.00354	15	0.01764
63	0.19411	56	0.00622	5	0.02054	29	0.03692	77	0.12289	58	0.00347	29	0.01744
5	0.19289	2	0.00579	64	0.02039	61	0.03346	63	0.11194	5	0.00311	63	0.01743
59	0.19183	63	0.00554	76	0.02031	69	0.02646	56	0.10454	39	0.00273	4	0.01726
77	0.18497	28	0.00545	59	0.02025	4	0.02251	39	0.10183	73	0.00266	13	0.01702
39	0.18326	31	0.00544	31	0.02013	60	0.01899	73	0.10143	68	0.00235	47	0.0169
56	0.18174	5	0.00518	73	0.01963	73	0.01330	62	0.08995	59	0.00232	3	0.01680
49	0.18168	59	0.00459	47	0.01934	21	0.01329	66	0.081043	62	0.00205	76	0.01671
73	0.18084	58	0.00438	62	0.01932	28	0.00980	55	0.08067	77	0.00179	78	0.01643
62	0.17795	62	0.00434	68	0.019232	71	0.00294	68	0.06737	63	0.00126	56	0.01641
68	0.16875	66	0.00425	60	0.01865	58	-0.00082	53	0.06012	56	0.00125	42	0.01632
53	0.16423	68	0.00406	53	0.01848	13	-0.00376	60	0.04722	45	0.00107	19	0.01627
45	0.15766	39	0.00398	39	0.01818	63	-0.01064	45	0.04636	60	0.00071	67	0.01600
78	0.15753	73	0.00365	69	0.01666	56	-0.01191	47	0.04296	43	0.00062	43	0.01588
60	0.15600	53	0.00356	33	0.01659	12	-0.01767	74	0.03266	55	0.00057	38	0.01579
13	0.15296	71	0.00353	54	0.01658	3	-0.01969	78	0.03190	53	0.00053	35	0.01566
75	0.15004	60	0.00262	74	0.01640	54	-0.02265	54	0.02695	78	0.00035	41	0.01562
74	0.14990	69	0.00178	12	0.01624	74	-0.02587	69	0.02146	74	-4.8E-05	65	0.01560
54	0.14975	74	0.00151	51	0.01591	33	-0.02639	13	0.01693	75	-0.00044	8	0.01557
41	0.14391	54	0.00136	45	0.01578	45	-0.02865	33	0.01677	13	-0.00062	57	0.01542
51	0.14251	47	0.00133	15	0.01560	75	-0.0291	12	0.01672	69	-0.00072	73	0.01537
15	0.14249	45	0.00122	13	0.01560	65	-0.03227	15	0.01244	46	-0.0009	52	0.01535
12	0.13631	12	0.00110	19	0.01501	47	-0.03904	51	0.01229	51	-0.00137	74	0.01533
3	0.13223	78	0.00071	78	0.01472	43	-0.03987	75	0.00791	54	-0.00198	2	0.01533

Performance Evaluation of Indian Mutual Funds Schemes with Respect...

Table A-3 Continued

[94]

Dh	ar
----	----

Sc h. N	S _R	Sc h. N	Jα	Sc h. N	T _R	Sc h. N	IR	Sc h. N	AR	Sc h. N	SHp	Sc h. N	M ²
0.	0.12094	0.	0.000(7	0.	0.01472	0	0.04171	0	0.00(01	0	-0.00205	0	0.01510
40	0.13084	13	0.00067	40	0.01472	42	-0.04171	79	0.00601	34	-0.00203	75	0.01519
33	0.13021	15	0.00064	75	0.01459	52	-0.04305	19	-0.0019	3	-0.00223	6	0.01508
69	0.13019	79	0.00049	46	0.01344	77	-0.04311	52	-0.01878	15	-0.00233	41	0.0149
34	0.12652	51	0.00044	3	0.01320	55	-0.04404	46	-0.02203	52	-0.00279	9	0.01439
65	0.12631	75	0.00020	8	0.01290	15	-0.04713	34	-0.02408	12	-0.00314	20	0.01414
52	0.12585	19	-0.00015	34	0.01288	19	-0.05281	65	-0.02718	42	-0.00325	61	0.01376
43	0.12260	46	-0.00050	52	0.01282	57	-0.05439	8	-0.02855	65	-0.00329	21	0.01359
38	0.11895	52	-0.00091	43	0.01276	38	-0.05713	80	-0.02939	43	-0.00347	10	0.0135
41	0.10899	3	-0.00116	57	0.01248	51	-0.06451	3	-0.03118	33	-0.00447	58	0.01222
42	0.10899	65	-0.00128	42	0.01247	8	-0.0698	57	-0.03162	44	-0.00512	45	0.01215
35	0.10594	80	-0.00155	65	0.01244	50	-0.07093	43	-0.03758	57	-0.00538	50	0.01213
6	0.10444	40	-0.00156	6	0.01225	67	-0.07201	6	-0.03826	6	-0.00617	44	0.01208
57	0.10388	43	-0.00173	35	0.01221	6	-0.07488	40	-0.04052	35	-0.00676	28	0.01207
44	0.10303	23	-0.00179	38	0.01219	35	-0.09136	36	-0.04729	19	-0.00677	80	0.01196
8	0.10293	8	-0.00208	41	0.01214	44	-0.09475	35	-0.05078	8	-0.00709	51	0.01193
67	0.09014	57	-0.00220	79	0.01124	79	-0.10637	42	-0.06017	80	-0.00748	71	0.01114
80	0.08989	42	-0.00222	44	0.01102	72	-0.10852	72	-0.06245	79	-0.00749	77	0.01093
79	0.06919	6	-0.00247	67	0.010383	1	-0.12223	44	-0.06413	41	-0.00803	34	0.00951
36	0.05767	38	-0.00271	80	0.00988	34	-0.12441	38	-0.06963	67	-0.00806	79	0.00757
50	0.05624	44	-0.00304	36	0.009446	40	-0.13755	50	-0.07478	1	-0.00924	40	0.00644
1	0.03415	41	-0.00375	50	0.00850	36	-0.1424	41	-0.07766	36	-0.00969	37	0.00638
72	0.03199	67	-0.00539	72	0.00776	41	-0.14864	67	-0.07878	50	-0.01228	36	0.00635
37	0.01982	72	-0.0062	1	0.00342	37	-0.15537	1	-0.12273	66	-0.01235	72	0.00630
55	-0.01341	1	-0.00702	37	0.00251	80	-0.16554	37	-0.16136	72	-0.01589	1	0.00600
66	-0.57245	50	-0.00739	66	-0.02796	46	-0.27117	23	-1.2416	37	-0.02245	55	-0.00059

Source: Calculated by author Note: Sch. No. stands for Scheme No. representing the same schemes as given in Table A- 1.1.

Sch. No.	S _R	T _R	Ja	IR	AR	SHp	M ²
28	\checkmark					1	
23	\checkmark	\checkmark		√ 1		√	\checkmark
49	\checkmark	\checkmark	\checkmark	√ 1	\checkmark	\checkmark	\checkmark
25	\checkmark	\checkmark	\checkmark	√ √	1	\checkmark	
48	\checkmark	\checkmark	\checkmark	√ √	\checkmark	\checkmark	\checkmark
26	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
29	\checkmark						
27	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
21	\checkmark				\checkmark		
10	\checkmark				\checkmark		
29		\checkmark					
55		\checkmark					
58		\checkmark					
63		\checkmark					
32			\checkmark				
33			\checkmark				
34			\checkmark				
35			\checkmark				
36			\checkmark				
37			\checkmark				
16			\checkmark	\checkmark			\checkmark
11				\checkmark			
70				\checkmark			
30					\checkmark		\checkmark
20					\checkmark	1	
17					\checkmark		
14					\checkmark		
38						1	
40						\checkmark	
68							\checkmark
24							\checkmark

Table A-4 : Top Ten performers according to various performance evaluation criterion

Source: Calculated by author

Note: Sch. No. stands for Scheme No. representing the same schemes as given in Table A- 1.1.

Dhar

Sch. No.	S _R	T _R	Jα	IR	AR	SHp	M ²
67	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
80	\checkmark	\checkmark		\checkmark		\checkmark	
79	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
36	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
50	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
72	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
37	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
55	\checkmark						\checkmark
66	\checkmark	\checkmark				\checkmark	
44		\checkmark	\checkmark		\checkmark		
57			\checkmark				
42			\checkmark		\checkmark		
6			\checkmark				
38			\checkmark		\checkmark		
41			\checkmark	\checkmark	\checkmark	\checkmark	
34				\checkmark			\checkmark
40							
46				\checkmark			
23					\checkmark		
71							\checkmark
77							\checkmark

 Table A-5 : Bottom Ten performers according to various performance evaluation criterion

Source: Calculated by author

Note: Sch. No. stands for Scheme No. representing the same schemes as given in Table A- 1.1.