List of Figures

1.3.1 Structure of some polymer	26
1.3.2 Chemical Structure of $ZnTTBPc$	28
1.4.1 Structural representation of Graphene Oxide (GO)	33
1.4.2 Structural representation of Reduced Graphene Oxide (RGO)	35
1.5.1 Two- dimensional transition metal dichalcogenide $\left(TMDC's\right)$	37
1.5.2 Band Gap of different $TMDC'S$	39
1.6.1 Mechanism of photocatalytic degradation	40
1.6.2 Cartoon of Photocurrent Generation	50
2.1.1 Schematic diagram of Applications of RGO-ZnS	60
2.2.1 Preoxidized graphite and GO synthesis	62
2.2.2 Synthesis of RGO	64
2.4.1 (A) The XRD patterns of GO,ZnS nanorod and $RGO-ZnS$	
composite. (B) TEM images of $RGO - ZnS$ composite. (C)	
XPS survey scan of $RGO - ZnS$ composite. (D) High reso-	
lution XPS spectra with $C \ 1 s$ peak deconvolution of $RGO-$	
ZnS composite	67
2.4.2 <i>HRTEM</i> images of ZnS nanorod attached on RGO	68

2.4.3 High resolution XPS spectra of (A) Zn . (B) S . (C) O	69
2.4.4 (A) $FTIR$ transmission spectra of GO,ZnS and $RGO-ZnS$	
composite (B) $UV-vis$ absorption spectra of ZnS and $RGO-$	
ZnS composite	71
2.4.5 Band gap energy of ZnS material	72
2.4.6 Photoluminescence spectra of controlled- ZnS and $RGO-ZnS$	
composite	73
$2.4.7(\mathrm{A})$ The cartoon of our photodetector device along with the	
electrical transport measurement setup (B) $I - V$ character-	
istics for $RGO - ZnS$ nanocomposite thin film device under	
dark and different illumination intensity. (C) The variation of	
photo sensitivity with illumination intensity of our thin film	
device. The mechanism of photocurrent generation is shown	
in the inset. (D) The growth and decay of current with fit-	
ting of Eqn. $2.4.2$ and $2.4.3$ respectively, when the illuminated	
light was turned ON and OFF for four cycles	75
$2.4.8\;UV-vis$ absorption spectrum of aqueous solution of (A) $4-$	
NP and $4 - NP$ with $NaBH_4$. (B) $4 - NP$ and $NaBH_4$	
without catalyst under dark. (C) Photocatalytic reduction of	
4-NP under solar light irradiation with ZnS and $RGO-ZnS$	
composites.	77

2.4.9 (A) Schematic representation of different reaction conditions	
for possible reduction of $4 - NP$. $UV - vis$ absorption spectra	
of $4 - NP$ in alkali medium with (B) controlled ZnS (C)	
RGO - ZnS composite for different time of simulated solar	
light irradiation	78
2.4.10(A) The comparison of the photo reduction efficiency as a	
function of time under illumination over ZnS and RGO –	
ZnS. (B) Plot of $ln(C_0/C)$ as a function of irradiation time	
for the photocatalysis of $4 - NP$ solution containing ZnS and	
RGO - ZnS composite	80
$2.4.1{\rm Schematic}$ representation of reduction mechanism of 4-NP	81
2.4.12Variation of (A) reduction efficiency and (B) k with varying	
loading ratio of RGO in the $RGO - ZnS$ composite	82
2.4.13(A) Photoreduction efficiency of $RGO - ZnS$ composite for	
different cycle (B) The XRD pattern of $RGO-ZnS$ composite	
after five cycles of reduction of $4 - NP$	83
3.2.1 Synthesis of CdS nano rod and $RGO-CdS$ nano composite .	90
3.4.1 (A) XRD patterns of Graphite, GO, RGO, CdS , and $RGO -$	
CdS composite. TEM images of (B) CdS and (C) RGO –	
CdS composite (D) HRTEM image of $RGO - CdS$ composite.	92
3.4.2 (A) Raman spectra of GO and $RGO - CdS$. (B) Optical ab-	
sorption spectra of CdS and $RGO - CdS$. (C) Plot of $(\alpha h\nu)^2$	
vs $h\nu$ for CdS . (D) Photoluminescence spectra of controlled-	
CdS and $RGO - CdS$ nano composite $\ldots \ldots \ldots \ldots$	94

3.5.1 Steps of photocatalytic procedure
3.5.2 Adsorption capacity of (A) Controlled-CdS and (B) $RGO-$
CdS nanocomposite
3.5.3 UV-vis absorption spectra of aqueous TC solution with (A)
CdS and (B) $RGO - CdS$ composite for different illumination
time. (C) Comparison of photo degradation efficiency and
(D) plot of $ln(C_0/C)$ as a function of illumination time for
controlled- CdS and $RGO - CdS$ composite
3.5.4 Recycle use of $RGO - CdS$ as photocatalyst
$3.5.5~(\mathrm{A})\mathrm{The}$ cartoon of our photodetector device along with the
electrical transport measurement setup. (B) $I - V$ charac-
teristics for controlled- CdS thin film device under dark and
different illumination intensity. (C) $I - V$ characteristics for
RGO - CdS nanocomposite thin film device under dark and
different illumination intensity. (D) The variation of photo
sensitivity with illumination intensity of our thin film device. 99
4.2.1 GO Synthesis diagram
4.2.2 Synthesis of $CdZnS$ nano rod and $RGO - CdZnS$ nano com-
posite
4.5.1 (A) The XRD patterns of Graphite, GO , controlled $CdZnS$,
RGO and $RGO - CdZnS$ composite. (B) TEM image of
RGO - CdZnS composite. The $HRTEM$ image of RGO –
CdZnS is shown in the inset of (B)

- 4.5.2 Micro-Raman spectrum of (A) CdZnS (B) GO and RGO 4.5.3 (A) Optical absorption spectra of controlled CdZnS and RGO – CdZnS composite. Plot of $(\alpha h v)^2$ vs photon energy (hv) for controlled-CdZnS is shown in the inset of (A). (B) Photoluminescence spectra of controlled-CdZnS and RGO - CdZnS4.6.1 (A) The cartoon of our photo photodetector device along with the electrical transport measurement setup (B) I - V characteristics for RGO - CdZnS nanocomposite thin film device under dark condition and under different level of illumination intensity. I-V characteristics for controlled-CdZnS thin film device under dark and illumination condition is shown in the inset. (C) The variation of P with illuminated intensity of RGO - CdZnS thin film device. Photocurrent generation mechanism in RGO - CdZnS device is shown in inset C. (D) Current versus time for several cycles as the light was turned 4.6.2 (A) Growth. (B) Decay of current in our RGO - CdZnS thin
 - film along with fittings of Eqn. 4.6.1 and 4.6.2 respectively. . . 116

4.7.1 UV - Vis absorption spectra of 4-nitrophenolet ion (A) controlled-
CdZnS (B) $RGO - CdZnS$ composite for different time of
simulated solar light. The comparison of (C) the photo degra-
dation efficiency and (D) $ln(C_0/C)$ as a function of illumina-
tion time for the photocatalysis of $4 - NP$ solution containing
CdZnS and $RGO - CdZnS$ composite
5.1.1 Photo Catalytic degradation mechanism of PNP by MoS_2 –
ZnTTBPc
5.2.1 Synthesis of Bulk MoS_2
5.2.2 Synyhesis of mono or few layer MoS_2
5.2.3 Synthesis of $MoS_2 - ZnTTBPc$ nano composite (Different
weight ratio) \ldots
5.5.1 (A) XRD patterns of MoS_2 , $ZnTTBPc$, and $MoS_2-ZnTTBPc$
$(3:1)$ composite. (B) <i>HRTEM</i> image of $MoS_2 - ZnTTBPc$
(3:1) composite
5.5.2 (A) Optical absorption spectra of controlled- $ZnTTBPc$ and
$MoS_2 - ZnTTBPc$ (3 : 1) composite. The optical absorp-
tion of controlled- MoS_2 is shown in the inset of (A). (B) Pho-
to luminescence spectra of controlled- $ZnTTBPc$, controlled-
MoS_2 , and $MoS_2 - ZnTTBPc$ (3 : 1) composite. (C) Lifetime
transients of controlled- $ZnTTBPc$, and $MoS_2 - ZnTTBPc$
(3:1) composite

5.5.3 Optical absorption spectra of $MoS_2 - ZnTTBPc$ composite
with varying ratio of MoS_2 and $ZnTTBPc$ (A) 1 : 1, (B) 2 : 1,
(C) $3:1$, (D) $4:1$, (E) $5:1$. (F) A comparison of change in
absorption after 300 \min of sonication for the varying ratio of
MoS_2 in the $MoS_2 - ZnTTBPc$ composite
5.5.4 Photoluminescence spectra of controlled- $ZnTTBPc$, and MoS_2-
$ZnTTBPc$ composite with varying ratio of MoS_2 and $ZnTTBPc$
(A) $1:1$, (B) $2:1$, (C) $3:1$, (D) $4:1$, (E) $5:1$. (F) Variation
of quenching efficiency of the $MoS_2 - ZnTTBPc$ composite
for different MoS_2 content in the composite after $300 \min$
sonication. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 137
5.5.5 (A) $FTIR$ spectra of controlled- $ZnTTBPc$, controlled- MoS_2 ,
and $MoS_2 - ZnTTBPc$ (3 : 1) composite. The magnified
view of $FTIR$ of controlled- MoS_2 (range : 500 - 400 cm ⁻¹)
is shown in the inset of (A). (B) Raman spectra of bulk MoS_2 ,
few layers of MoS_2 (controlled- MoS_2), and $MoS_2-ZnTTBPc$
$(3:1)$ composite. The vibration of E_{2g}^1 and A_g^1 is shown in
the inset of (B). \ldots
5.5.6 (A) AFM image of $MoS_2 - ZnTTBPc$ (3 : 1) composite films
on a silicon wafer. (B) TEM image of $MoS_2 - ZnTTBPc$
(3:1) composite
5.6.1 $UV - vis$ absorption spectra of $4 - NP$ and $NaBH_4$ solution
(A) without catalyst under dark and simulated solar light il-
lumination for 1 h (B) with and without $MoS_2 - ZnTTBPc$
(3:1) composite under dark

5.6.2 UV vis absorption spectra of $4 - NP$ and $NaBH_4$ solution
with (A) $MoS_2 - ZnTTBPc$ (3 : 1) composite, (B) controlled-
$ZnTTBPc$, and (C) controlled- MoS_2 for different time of sim-
ulated solar light illumination
$5.6.3(\mathrm{A})$ Comparison of photodegradation efficiency as a function
of time under simulated solar-light illumination for controlled-
$ZnTTBPc$, controlled- MoS_2 , and $MoS_2 - ZnTTBPc$ (3 :
1) composite. (B) Plot of $ln(C_0/C)$ as a function of sim-
ulated solar-light irradiation time for the photocatalysis of
$4 - NP$ containing controlled- $ZnTTBPc$, controlled- MoS_2 ,
and $MoS_2 - ZnTTBPc$ (3:1) composite
5.6.4 Comparison of the photo degradation efficiency with varying
ratio of MoS_2 and $ZnTTBPc$ in the $MoS_2 - ZnTTBPc$ com-
posite
5.6.5 Mechanism of photocatalytic reduction of $4-NP$ using MoS_2-
ZnTTBPc (3:1) under solar light illumination
5.6.6 (A) Photodegradation efficiency of $MoS_2 - ZnTTBPc$ (3 :
1) composite for different cycle. (B) The XRD pattern of
$MoS_2 - ZnTTBPc$ (3 : 1) composite after five cycles of re-
duction of $4 - NP$