2019

B.Sc. (Honours)

5th Semester Examination

PHYSICS

Paper - C12T

Full Marks: 40 Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any *five* questions from the following: $2\times 5=10$
 - (a) A metal has a static conductivity of 4×10^7 mho/m. Assuming that the true charge carries are free electrons and they are 2×10^{28} in number per m³, calculate the relaxation time.
 - (b) Differentiate between Type-I and Type-II superconductors.
 - (c) Show that for as 1D mono-atomic lattice the group velocity at the zone boundary is zero.

[Turn Over]

- (d) The paramagnetic susceptibility of a material which has 10^{28} atoms/ m^3 is 2.8×10^{-4} at 350K. Calculate its susceptibility at 300K.
- (e) What is the basic difference between a crystalline solid and amorphous solid?
- (f) For the first allowed energy band in a crystalline solid, plot qualitatively the variation of energy E and the effective mass m^* with the wave number k.
- (g) Consider X-rays of wavelength 1.54×10⁻¹⁰ m incident on a simple cubic crystal of lattice constant 4.0×10⁻¹⁰ m. Calculate the glancing angle for the first order reflection.
- (h) What is Meissner effect?

2

- 2. Answer any *four* questions from the following: $5\times4=20$
 - (a) Write down the Laue's equations for X-ray diffraction from a crystalline solid and obtain Bragg's law from Laue's equation. How does Laue approach differ from the Bragg approach?

1+3+1

(b) In a 1D lattice

- (i) Write down the expressions of the maximum and the minimum frequencies for the acoustic and optical branches considering lighter mass as 'm' while heavier mass as 'M'.
- (ii) Find the widths of both the branches when $m \ll M$ and the ratio of widths. 2
- (iii) What is phonon?
- (c) Explain hysteresis in ferromagnetic materials from Weiss domain theory. 5
- (d) Show that the effective mass of an electron in a crystal is given by

$$m^* = \hbar^2 \left(\frac{d^2 E}{dk^2} \right)$$

where the symbols have their usual meanings.

The energy of an electron in a band is given by $E = E_1 - E_2 \cos(ka)$, where E_1 , E_2 and a are constants. Find the effective mass in the band.

5

[Turn Over]

- (e) What is Hall effect? Find Hall coefficient in a metal. Why is the Hall coefficient positive in some metals?
 1+3+1
- (f) Show that the number of possible wave functions in any energy band is equal to the number of unit cells.
- 3. Answer any *one* question from the following: $10 \times 1 = 10$
 - (a) (i) Write down basic assumptions behind Langevin's theory of paramagnetism. 1
 - (ii) Derive the expression for the total magnetisation.
 - (iii) Discuss the characteristics of Langevin function for low and high magnetic fields.

2

- (iv) Hence find the Curie's law of paramagnetism.
- (v) Give the physical significance of real and imaginary parts of refractive index of a material.
- (a) (i) Define atomic scattering factor and geometrical structure factor. 2+2

(ii) Obtain Clausius-Mosotti equation relating macroscopic dielectric constant with microscopic polarizabilities. An elemental dielectric material has dilectric constant 12 and it contains 5×10²⁸ atoms/m³. Calculate its electronic polarizability.