UG/4th Sem/PHYS/H/19(Pr.)

2019

B.Sc. (Hons)

4th Semester Examination

PHYSICS

Paper - SEC2P

[Practical]

Full Marks: 15

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Computational Physics

Answer any one question

- 1. Write a FORTRAN program to print all even numbers between 25 and 51.
- 2. Write a FORTRAN program to find the largest number from a set of seven numbers.
- 3. Using a FORTRAN program calculate the value of e (exp (1)) as a sum of first 4 terms.

[Turn Over]

- 4. Using a FORTRAN program calculate the standard deviation for first 6 natural numbers.
- 5. Use FORTRAN program to obtain the area under $y = \sin x$ curve for $0 \le x \le \pi/2$.
- 6. Use FORTRAN program to calculate the product of matrices X and Z, where

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- 7. Write a FORTRAN program to find all the prime numbers between 10 and 50.
- 8. A ball is thrown horizontally with initial velocity $(v_x, v_y)_{t=0} = (1, 0)$ from a position

$$(x, y)_{t=0} = (0, 34)$$

Use gnu plot to show the trajectory of the ball.

[All the numbers are in SI unit]

10

٠

9. Suppose you have the following data

1	30
2	25
3	20
4	15
5	10
6	5

Save these data in a text editor. Draw a graph using gnu plot and save the graph as a pdf or eps file

10. Using gnu plot, find the roots of (i) $x^2 + 8x + 15 = 0$ and (ii) $x^2 - 6x + 9 = 0$ for same x and y axes. 10

$$Program = 10$$

$$LNB = 2$$

15

Basic Instruments Skill Practical

Distribution of Marks : Full marks - 15

- 1. Experiment 10
- 2. Laboratory Note Book 2
- 3. Viva voce 3

Modalities:

- Experiment should be distributed on basis of lottery. Candidates may be allowed for two chances. 01 mark should be deducted for every additional chance.
- 2. Award 01 mark in LNB for performing 3 experiments in class and 1.5 marks for (4-5) experiments and 02 marks for 6 or more experiments.
- 1. Study the loading effect of a multimeter while measuring voltage across a low or high resistance.
 - A. Circuit diagram and working formula 1+1
 - B. Experimental Data 6
 - C. Calculation and Conclusion

2.		dy the limitation of a multimeter while me tage and current at high frequency.	easuring
	A.	Circuit diagram and working formula	1+1
Į.	В.	Experimental Data	6
	C.	Calculation and Conclusion	1+1
3.	Me	asure the Q of a coil using Q meter	
	A.	Circuit diagram and working formula	1+1
	В.	Experimental Data	6
	C.	Calculation and Concrusion	1+1
4.		asure the voltage and time period of a ve-form using CRO	a given
	A.	Block diagram of the arrangement and v formula	vorking 1+2
	B.	Experimental Data (three set)	6
	C.	Calculation	1

Measure the frequency and phase angle using CRO of two given wave-forms		
A. Block diagram of the arrangement and formula	working 1+2	
B. Experimental Data (three set)	6	
C. Calculation	1	

6. Measure the time period, frequency and average period using frequency counter/universal counter

A. Block diagram of the arrangement and working formula 1+2

B. Experimental Data 6

C. Calculation 1

Renewable Engg & Engg Harvesting

Distribution of Marks: Full marks - 15

- 1. Experiment 10
- 2. Laboratory Note Book 2
- 3. Viva voce 3

Answer any one from following questions

1. Do	characterizations of a given solar cell module	
(a)	Theory of solar cell	3
10.00	Draw circuit diagram for the characteristic solar cell with varying biasing voltage	of 2
	Record data for the characteristics of solar ce Current voltage values (5 values) with varyin biasing voltage. Calculate corresponding pow deliver to the load.	ng
(d)	Make a conclusion	1
2. Dem	nonstrate the given solar cell module	
270 10	Working formula for PCE and Fill Factor of solar cell.	а 2
(b)	Draw circuit diagram for the characteristics	of

(c) Record data for current voltage values (5 values) with varying biasing voltage. Calculate corresponding power deliver to the load.

solar cell with varying load resistance.

(d) Draw a graph between power and voltage.

3. Study conversion of vibration to voltage using a

	piez	zo-electric material.	
	(a)	Theory of piezoelectricity	2
	(b)	Draw circuit diagram for the conversion of vibration to voltage	of 2
	(c)	Record data for generated voltage across a loa with frequency of vibration of shaker.	d 5
	(d)	Conclusion and discussions.	1
4.		dy the conversion of temperature into voltage using moelectric modules.	g
	(a)	Write the working formula of thermal voltage an efficiency of a thermoelectric modules considering the average seebeck coefficient and average module resistance.	g
	(b)	Draw a circuit design of thermo electri	c 2
	(c)	Record data for generated voltage wit temperature difference (four valves) for module's average seebeck coefficient in volts of	a

(d) Conclusion and discussions.

1

Applied Optics

Distribution of Marks : Full marks - 15

- 1. Experiment 10
- 2. Laboratory Note Book 2
- 3. Viva voce 3

Modalities:

- 1. Experiment should be distributed on basis of lottery. Candidates may be allowed for two chances. 01 mark should be deducted for every additional chance.
- Award 01 mark in LNB for performing 3 experiments in class and 1.5 marks for (4-5) experiments and 02 marks for 6 or more experiments.
- Determine the grating radial spacing of the Compact Disc (CD) by reflection using LASER source
 - A. Theory with block diagram

2

B. Experimental Data

6

[Turn Over]

C. Calculation	2
Determine the width of a wire or slit using diffract patern using LASER source	etion -
A. Theory with block diagram	2
B. Experimental Data	6
C. Calculation	2
 Measure the polarization angle of LASER light to polarizer and analyzer 	ısing
A. Theory with block diagram	2 .
B. Experimental Data	6 .
C. Calculation	2
4. Measure the thermal expansion of quartz to LASER	ısing
A. Theory with block diagram	2
B. Experimental Data	6
C. Calculation	2

	5. Study the V-I characteristics of LED (one col	our)
*	A. Circuit diagram and working formula for f resistance	orward 1+1
	B. Experimental data	5
	C. Drawing of graph	2
	D. Calculation of forward resistance	I
	6. Study the V-I characteristics of LDR.	
	A. Circuit diagram	1
	B. Experimental data	6
	C. Drawing of graph	2
à	D. Calculation of resistance for particular su intensity	pplied 1
	7. Study the V-I characteristics of Photovoltaic co	ell
	A. Circuit diagram and theory	1+1
	B. Experimental data	5
	C. Drawing of graph	2
	D. Calculation of resistance	1

[Turn Over]

8. Study the V-I characteristics of Solid state lase	er II	
A. Circuit diagram and theory	1+1	
B. Experimental data	6	
C. Drawing of graph	2	
9. Measure the numerical aperture of an optical fiber		
A. Theory with block diagram	2	
B. Experimental Data	6	
C. Calculation	2	