CONTENTS

	Page No
Title Page	Ι
Certificate	ii (a), (b), (c), (d)
Abstract	iii-iv
Declaration	V
Acknowledgement	Vi
Contents	vii-xii
List of Tables	xiii- xiv
List of Figures	xv- xviii
List of Abbreviations and Symbols	xix-xx

General Introduction	1-24
Types of amylase	4
Classification on the basis of anomeric sugar production	4-6
Production of amylase	6-8
Mode of action	8-9
Purification and kinetics of amylase	9-10
Characterization of amylase	10-11

	Review of literature on α- amylase	11-20
	Application of amylase	20-23
	Aim and objectives of the present study	23-24
Chapter 1	Isolation and identification of potent acidophilic	25-33
	amylase producing fungal strain from starchy waste	
1.1	Introduction	25-26
1.2	Materials and methods	26-28
1.2.1	Collection of sample	26
1.2.2	Dilution of soil sample	26
1.2.3	Media for selection of amylase producing bacteria	26-27
1.2.4	Isolation of acidophilic fungi	27
1.2.5	Preparation of potato peel	27
1.2.6	Prepartaion of spore suspension	27
1.2.7	. Secondary screening of the isolates	27
1.2.8	Identification of potent fungal strain	28
1.3	Result and discussions	28-33
1.3.1	Isolation and primary screening α- amylase	28-30
1.3.2	Secondary screening of fungi	30-32
1.3.3	Identification of the selected fungal strain	32-33
1.4	Conclusion	33
Chapter 2	Utilization of starchy waste and optimization of	34-65
	physico- chemical process parameters for maximum	
	acidophilus amylase production by Aspergillus niger	
	RBP7 through solid state and submerged fermentation	
2.1	Introduction	34-40
2.2	Materials and methods	40-45
2.2.1	Substrate degradation pattern	40
2.2.1.1	Uses of different waste materials for amylase production	40
2.2.1.2	Scanning electron microscopy (SEM) study	40-41
2.2.2	Estimation of fungal growth	41
2.2.3	Inoculums preparation	41
2.2.4	Optimization of enzyme production by solid state	41-44

		41.40
2.2.4.1	One variable at a time (OVAT) approach	41-42
2.2.4.2	Statistical optimization using response surface	42-43
	methodology (RSM)	
2.2.4.3	Enzyme extraction	43
2.2.4.4	Assay for α -amylase activity	43
2.2.4.5	Protein determination	43
2.2.4.6	Production of acidophilus amylase in large scale	44
2.2.5	Optimization of Submerged fermentation for acidophilic amylase production	44-45
2.2.5.1	OVAT methodology	44
2.2.5.2	Statistical approach by using Response Surface	44-45
	Methodology	
2.2.5.3	Comparative study of acidophilic amylase from	45
	Aspergillus niger RBP7 and standard strain Aspergillus	
	niger MTCC 281	
2.3	Result and discussions	45-64
2.3.1	Production of amylase in solid state fermentation by using	45-46
	Production of amylase in solid state fermentation by using different substrates	
2.3.1 2.3.2		45-46 47
	different substrates Analysis of substrate degradation pattern	
2.3.2	different substrates	47
2.3.2 2.3.3	different substrates Analysis of substrate degradation pattern Growth curve of fungi	47 49
2.3.2 2.3.3 2.3.4	different substrates Analysis of substrate degradation pattern Growth curve of fungi Optimization of fermentation parameters	47 49 49-58
2.3.2 2.3.3 2.3.4 2.3.4.1	different substrates Analysis of substrate degradation pattern Growth curve of fungi Optimization of fermentation parameters OVAT methodology	47 49 49-58 48-54
2.3.2 2.3.3 2.3.4 2.3.4.1 2.3.4.2	different substrates Analysis of substrate degradation pattern Growth curve of fungi Optimization of fermentation parameters OVAT methodology RSM study	47 49 49-58 48-54 54-57
2.3.2 2.3.3 2.3.4 2.3.4.1 2.3.4.2	different substrates Analysis of substrate degradation pattern Growth curve of fungi Optimization of fermentation parameters OVAT methodology RSM study Pilot scale experiment for production of amylase by solid	47 49 49-58 48-54 54-57
2.3.2 2.3.3 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3.	different substrates Analysis of substrate degradation pattern Growth curve of fungi Optimization of fermentation parameters OVAT methodology RSM study Pilot scale experiment for production of amylase by solid state fermentation	47 49 49-58 48-54 54-57 57-58

2.3.6	Comparison between the enzyme production from	64
	Aspergillus niger RBP7 and Aspergillus niger MTCC 281	
2.4	Conclusion	64-65
Chapter 3	Purification and kinetic characterization of the	66-80
	acidophilus amylase	
3.1	Introduction	66-67
3.2	Materials and methods	67-71
3.2.1	Acidophillus amylase extraction from the end product of	67
	SSF	
3.2.2	Assay of amylase activity and protein content	67
3.2.3	Enzyme Purification	67-68
3.2.4	Molecular weight determination and zymogram analysis	68
3.2.5	Substrate specificity and enzyme kinetics	68-69
3.2.6	Measurement of optical rotation	69
3.2.7	Measurement of dextrinizing agent	69
3.2.8	Effect of inhibitors on enzyme activity	69
3.2.9	Determination of optimum pH and Temperature and	69-70
	stability	
3.2.10	Effects of additives on enzyme activity	70
3.2.11	Detection of temperature quotient (Q ₁₀)	70
3.2.12	Storage stability and light sensitivity	70-71
3.3	Result and discussions	71-80
3.3.1	Purification and characterization of α-amylase	71-72
3.3.2	Substrate specificity and enzyme kinetics	72-73
3.3.3	Determination of the type of amylase	73-75
3.3.4	Effects of pH and temperature on activity and stability of	75-76
	the enzyme	
3.3.5	Temperature quotient (Q ₁₀)	76-77

5.2.1	Sequence and structure retrieval	94
5.2	Materials and methods	94-95
5.1	Introduction	93-94
	amylase: with Special Reference to Aspergillus niger	
Chapter 5	<i>In Silico</i> Study on Molecular Adaptation of Acid α-	93-103
4.4	Conclusion	92
4.3.5	Significance of the study	90-92
4.3.4	Application of acidophilic amylase in waste management	89
4.3.3	Cell viability result of acidophilic amylase RBP7	88
	nutritionally important compound	
	bioconversion of raw starch and heterogeneous	
4.3.2	Comparative study on enzymatic catalytic efficiency and	86-88
4.3.1	Hydrolysis of raw starchy food stuff	84-85
4.3	Result and discussions	84-89
4.2.4	Application of acidophilic amylase in waste management	83-84
4.2.3	In vitro cytotoxicity assay	83
4.2.2	Study of enzyme efficiency	82-83
4.2.1	Hydrolysis of starchy foods	82
4.2	Materials and methods	82-84
4.1	Introduction	81-82
	cytotoxicity and waste management study	
	raw starch and different food stuff, enzyme efficacy,	
Chapter 4	Application of enzyme in saccharification of natural	81-90
3.4	Conclusion	80
3.3.7	Storage stability and light sensitivity	79-80
3.3.6	Effect of additives on α- amylase	77-78

5.2.2	Multiple Sequence Alignment	94
5.2.3	Phylogenetic tree construction	94-95
5.2.4	Structural comparison and active site analysis	95
5.3	Result and discussions	95-102
5.4	Conclusion	103
	Summary	104-109
	Reference	110-134
	Response to Ph.D Thesis Adjudicators' Quarries	135-138
	Curriculum vitae	139
	Publications	140