LIST OF FIGURES

Figure No.	Name	Page
_		No.
Fig 1.1	Location of the study area (Gurguripal ecoforest, Paschim	41
	Medinipur, West Bengal, India)	
Fig 1.2 –	Occurrence of wild mushrooms in Gurguripal ecoforest	43
A, B, C, D		
Fig 1.3 –	Collection of mushroom specimens during field survey	43
A, B, C, D	in Gurguripal ecoforest	
Fig 1.4	A, B, C - Harvesting, D - Cooking of wild edible mushrooms	44
	by local tribal people in Gurguripal	
Fig 1.5	Selling of mushrooms in markets nearby Gurguripal (A-	44
	Termitomyces heimii, B- Astraeus hygrometricus, C-	
	Volvariella volvacea, D- Amanita bisporigera)	
Fig 1.6	Family wise distribution of mushroom in Gurguripal ecoforest	52
Fig 1.7	Distribution of mushrooms on different habitat in Gurguripal	52
	ecoforest	
Fig 1.8	Mushroom species used by the tribal communities in	81
	Gurguripal	
Fig 2.1	Antioxidant assay (IC ₅₀ value in %) of methanolic fractions of	102
	<i>T. heimii</i> (A, B) and <i>V. volvacea</i> (C, D)	
Fig 2.2 (A)	Chromatogram of GC-MS analysis of methanolic extracts of <i>T</i> .	104
	heimii	
Fig 2.2 (B)	Chromatogram of GC-MS analysis of methanolic extracts of V.	105
	volvacea	
Fig 2.3 (A)	Nutrient analysis of <i>T. heimii</i>	106
Fig 2.3 (B)	Nutrient analysis of V. volvacea	106
Fig 3.1	UV-Vis spectrum analysis of silver nanopartcles	119
Fig 3.2	FT-IR study of silver nanoparticles	119
Fig 3.3	HPLC analysis of Termitomyces heimii extract	121
Fig 3.4	LC-MS analysis of THP-I from <i>T. heimii</i>	123
Fig 3.5	¹ H-NMR spectrum and chemical shifts of THP-I from <i>T. heimii</i>	123
Fig 3.6 (A)	Cytotoxic effects of THP-I from <i>T. heimii</i> on Vero and HCT	126
	cell lines	
Fig 3.6 (B)	HCT cells before treatment (A), cell death after treatment (B)	126
Fig 3.6 (C)	Vero cells before treatment (C), after treatment (D)	126
Fig 3.7	Antibacterial activity of acetone extracts against the selected	128
	bacteria	
Fig 3.8	Antibacterial activity of ethanolic (A, B, C, D) and hot water	129
	(E, F) extracts against the selected bacteria	

Fig 3.9	Antibacterial activity of methanolic extracts against the selected	130
1.6 3.7	bacteria	100
Fig 3.10	Antibacterial activity of F ₁₁ , AgNPs and THP-I against the	131
Ū.	selected bacteria	
Fig 4.1	Microscopic observation of untreated and <i>p</i> -CA treated	140
	S. aureus and E. coli cells	
Fig- 4.2	Ramachandran plot analysis of some good quality structures	159
	[Residues in most favoured regions (A, B, L)% + Residues in	
	additional allowed regions (a, b, l, p)%]	
Fig- 4.3	Some predicted membrane protein structures of S. aureus and	164
	their docking with <i>p</i> -CA	
Fig- 4.4	Phylogenetic tree of all the trans-membrane proteins from	167
	S. aureus and E. coli. The matched sequences were presented	
	elaborately in the figure (Red=match sequences between S.	
	aureus and <i>E. coli</i> ; Blue = only from S. aureus; Green = only	
	from E. coli)	
Fig- 4.5	Some structurally similar protein present in S. aureus and E.	171
	coli	
Fig- 4.6	Molecular docking results of <i>p</i> -CA with different proteins	172
	showing high Atomic Contact Energy (ACE) value	
Fig- 4.7	Docking site (A) and rigid bond pattern (B) of p -CA within	172
	CDP-diacylglycerol-glycerol-3-phosphate 3-	
	phosphatidyltransferase of S. aureus	
Fig- 4.8	Docking site (A) and rigid bond pattern (B) of p -CA within	173
	CDP-diacylglycerol-glycerol-3-phosphate 3-	
	phosphatidyltransferase of E. coli	