
Chapter 2

Solution Methodologies

2.1 Mathematical Prerequisites

2.1.1 Crisp Set Theory

Crisp Set: By crisp one mean dichotomous, that is, yes or no type rather than
more-or-less type. In conventional dual logic, for instance, a statement can be true
or false – and nothing in between. In set theory, an element can either belongs to a
set or not; and in optimization, a solution is either feasible or not. A classical set,
X, is defined by crisp boundaries, i.e., there is no uncertainty in the prescription
of the elements of the set. Normally it is defined as a well defined collection of
elements or objects, x ∈X, where X may be countable or uncountable.

Convex Set: A subset S ⊂Rn is said to be convex, if for any two points s1, s2 in S,
the line segment joining the points s1 and s2 is also contained in S. Mathematically,
a subset S ⊂Rn is convex, if and only if

∀s1, s2 ∈ S ⇒ λs1 + (1 − λ)s2 ∈ S; 0 ≤ λ ≤ 1

Convex Combination: Given a set of vectors {v1, v2,⋯, vn}, a linear combination
x = λ1v1 + λ2v2 + ⋯ + λnvn is called a convex combination of the given vectors, if
λ1, λ2,⋯, λn ≥ 0 and

n

∑
i=1
λi = 1.

31

32 CHAPTER 2. SOLUTION METHODOLOGIES

Convex Function: The function f ∶ S →R is said to be convex if for any s1, s2 ∈ S

and 0 ≤ λ ≤ 1, implies that

f{λs1 + (1 − λ)s2} ≤ λf(s1) + (1 − λ)f(s2)

The definition of convex functions can be modified for concave functions by re-
placing ′ ≤′ by ′ ≥′.

2.1.2 Fuzzy Set Theory

The membership value µA(x) of an element x with respect to the crisp set A is
either 0 or 1, i.e., an object x either belongs to A (µA(x) = 1) or does not belongs
to A (µA(x) = 0). But in fuzzy set theory, the membership value of an element can
be any value in the interval [0,1] specified by a proper membership function, i.e.,
there is an ambiguity whether the object belongs to the set or not. This concept of
fuzzy set was initialized by Prof. L.A. Zadeh [208] in 1965. The fuzzy set theory
has been well developed and widely used in real life problems in SC/inventory
control problems during last few decades [21, 66, 68, 88, 98, 99, 112, 113, 117].

2.1.2.1 Fuzzy Set

Fuzzy sets deal with objects that are ‘matter of degree’, with all possible grades
of truth between yes or no, and the shades of grey between white and black. So a
fuzzy set is a class of objects in which there is no sharp boundary between those
objects that belong to the class and those that do not. Let X be a collection of
objects and x be an element of X, then a fuzzy set Ã in X is a set of ordered
pairs Ã = {(x,µÃ(x))/x ∈ X}, where µÃ(x) is called the membership function or
grade of membership of x in Ã which maps X to the membership space M which
is considered as the closed interval [0, u], where 0 < u ≤ 1.

Note: When M consists of only two points 0 and 1, Ã becomes a non-fuzzy set
(or crisp set) and µÃ(x) reduces to the characteristic function of the non-fuzzy set
(or crisp set).

• Equality: Two fuzzy sets Ã and B̃ in X are said to be equal if and only if
µÃ(x) = µB̃(x),∀x ∈X.

2.1. MATHEMATICAL PREREQUISITES 33

• Containment: A fuzzy set Ã in X is contained in or is a subset of another
fuzzy set B̃ in X, written as Ã ⊂ B̃ if and only if µÃ(x) ≤ µB̃(x),∀x ∈X.

• Support: The support of a fuzzy set Ã is a crisp set, denoted by S(Ã) and
is defined as

S(Ã) = {x ∣µÃ(x) > 0}

• Height: The height of a fuzzy set Ã in X is the maximum membership
grade value of Ã, denoted by h(Ã) and is defined as

h(Ã) = sup
x∈X

µÃ(x)

where, X is the universal set.

• Normal fuzzy set: A fuzzy set Ã in X is called normal if its height is 1,
i.e., if h(Ã) = sup

x∈X
µÃ(x) = 1.

• Core: The core of a fuzzy set Ã is a set of all points with unit membership
degree in Ã, denoted by Core(Ã) and is defined as

Core(Ã) = {x ∈X ∣µÃ(x) = 1}

• Convexity: A fuzzy set Ã in X is said to be convex if and only if for any
x1, x2 ∈X, the membership function of Ã satisfies the inequality

µÃ(λx1 + (1 − λ)x2) ≥min{µÃ(x1), µÃ(x2)}, for 0 ≤ λ ≤ 1

2.1.2.2 Fuzzy Number

A fuzzy number represents a fuzzy set which takes all possible values of a real
object where each value is associated with a membership value (grade). This
membership value represents the possibility of being actual value of the object.
For example, price of some products in the market, holding cost of the retailer etc.
As a fuzzy number represents the numerical value of an real object, it must be a
fuzzy set in real number R and some of its elements must have membership value
1. So a fuzzy number is a fuzzy set Ã defined in the set of real numbers R having
the following properties [208]:

34 CHAPTER 2. SOLUTION METHODOLOGIES

• Ã is a convex fuzzy set.

• Ã is a normal fuzzy set.

In 1980, Dubois and Prade [42] was proposed more generalised definition of a
fuzzy number Ã, where Ã consists of four real parameters a1, a2, a3, a4 and its
membership function µÃ(x) takes the following form (cf. Figure 2.1):

µÃ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a1

L(x) if a1 ≤ x ≤ a2

1 if a2 ≤ x ≤ a3

R(x) if a3 ≤ x ≤ a4

0 if x ≥ a4

Figure 2.1: Graphical representa-
tion of a generalized fuzzy number

where, L(x) and R(x) are continuous function in their domain of definition, L(x)
is monotonic increasing and R(x) is monotonic decreasing.

The fuzzy number Ã is said to be discrete or continuous according as its mem-
bership function µÃ is discrete or continuous. Triangular Fuzzy Number (TFN) is
a special class of continuous fuzzy number widely used in the modelling of different
branches of science and engineering.

Triangular Fuzzy Number (TFN):A TFN Ã is specified by the triplet (a1, a2, a3)

and is defined by its continuous membership function µÃ(x) ∶X → [0,1] as follows
(cf. Figure 2.2):

µÃ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − a1

a2 − a1

if a1 ≤ x ≤ a2

a3 − x

a3 − a2

if a2 ≤ x ≤ a3

0 otherwise

(2.1)

Figure 2.2: Membership function
of TFN

2.1. MATHEMATICAL PREREQUISITES 35

Fuzzy Extension Principle [209]: Consider a real valued function f(x, y) of
two real variables x, y and Ã, B̃ be two fuzzy numbers. Then f(Ã, B̃) is another
fuzzy number C̃ having membership function µC̃ represented by

µC̃(z) = sup
x,y∈R

{min(µÃ(x), µB̃(y)), z = f(x, y)} (2.2)

2.1.2.3 α-cut of a Fuzzy Number

α-cut of a fuzzy number Ã in X is denoted by A[α] and is defined as the
following crisp set (cf. Figure 2.3):

A[α] = {x ∶ µÃ(x) ≥ α,x ∈X}, where α ∈ [0,1]

A[α] is a non-empty bounded closed interval contained in X and it can be denoted
by A[α] = [AL(α),AR(α)]. AL(α) and AR(α) are the lower and upper bounds of
the closed interval respectively, which are the functions of α.

Figure 2.3: α-cut of generalized fuzzy number Ã = (a1, a2, a3, a4)

Figure 2.3 represents a fuzzy number Ã with α-cuts A[α1] = [AL(α1),AR(α1)],
A[α2] = [AL(α2),AR(α2)]. It shows that if α2 ≥ α1, then AL(α2) ≥ AL(α1) and
AR(α2) ≤ AR(α1).

In particular, to find the α-cut for a TFN Ã = (a1, a2, a3), it can be use the left
and right reference function (cf. Figure 2.2) of Ã; i.e., α =

x − a1

a2 − a1

and α =
a3 − x

a3 − a2

,

which gives the α-cut of Ã as A[α] = [a1 + α(a2 − a1), a3 − α(a3 − a2)].

α-cut of a function: Let F̃ (X) be the space of all compact and convex fuzzy
sets on X. If f ∶Rn →R is a continuous function, then f̃ ∶ F̃ (Rn)→ F̃ (R) is well

36 CHAPTER 2. SOLUTION METHODOLOGIES

defined function and its α-cut f̃(u)[α] is given by [159]

f̃(u)[α] = f(u[α]), ∀α ∈ [0,1],∀ũ ∈ F̃ (Rn) (2.3)

where f(A) = {f(a)/a ∈ A}.

2.1.2.4 Defuzzification Methods

In the literature of fuzzy mathematics, several approaches are available to con-
vert a fuzzy number into its equivalent crisp number [30, 31, 64, 205]. Each method
has some merits and demerits over the others. In this thesis, used defuzzification
method is discussed below.

Graded Mean Integration Value (GMIV) of Fuzzy Number: Chen and
Hsieh [30, 31] introduced GMIV method based on the integral value of graded mean
α-level of generalized fuzzy number. Suppose Ã = (a1, a2, a3, a4) is a generalized
fuzzy number as shown in Figure 2.1. Then according to Chen et al. [30], Graded
Mean Integration Value (GMIV) of Ã is denoted by G(Ã) and is defined as

G(Ã) =

1

∫
0

x{(1 − ω)L−1(x) + ωR−1(x)}dx/

1

∫
0

xdx

= 2

1

∫
0

x{(1 − ω)L−1(x) + ωR−1(x)}dx

where, ω ∈ [0,1] is a preassigned parameter called ‘degree of optimism’. Using this
rule, GMIV of a TFN B̃ = (b1, b2, b3) is obtained as

G(B̃) =
1

3
[(1 − ω)b1 + 2b2 + ωb3]

.

2.1.2.5 Different Measures in Fuzzy Environment

Let Ã and B̃ be two fuzzy numbers with respective membership functions µÃ(x)
and µB̃(x). Then for any comparison operator ⋆ ∈ {>,<,=,≥,≤}, Ã ⋆ B̃ represents
a fuzzy event. In fact, for any fuzzy number C̃ having membership function
µC̃(x), the degree of membership of an element x ∈ X in the fuzzy set C̃ can be

2.1. MATHEMATICAL PREREQUISITES 37

measured following any one of the three semantics of fuzzy numbers, namely degree
of similarity proposed by Bellman et al. [8], degree of preference introduced by
Bellman and Zadeh [9], degree of uncertainty proposed by Zadeh [209]. Following
degree of uncertainty as the semantics of fuzzy numbers, different measures of the
fuzzy events are proposed by several researchers in the last few decades [48, 105,
113, 117]. Each of these approaches has some merits and demerits over the others.
Some of these approaches are presented here which are followed in this research
work.

Possibility measure of a fuzzy event: The possibility measure of the fuzzy
event Ã⋆ B̃ involving two fuzzy numbers Ã and B̃, is denoted by Pos(Ã⋆ B̃) and
is defined as

Pos(Ã ⋆ B̃) = sup{min(µÃ(x), µB̃(y)), x, y ∈R, x ⋆ y} (2.4)

where, ⋆ ∈ {>,<,=,≥,≤}. This approach is normally followed by optimistic DMs
only.

Necessity measure of a fuzzy event: The necessity measure of the fuzzy event
Ã ⋆ B̃ is denoted by Nes(Ã ⋆ B̃) and is defined as

Nes(Ã ⋆ B̃) = 1 − Pos(Ã ⋆ B̃) (2.5)

where, complement of Ã ⋆ B̃ is denoted by Ã ⋆ B̃. This approach is normally
followed by pessimistic DMs only.

Credibility measure of a fuzzy event: The credibility measure of the fuzzy
event Ã ⋆ B̃ is denoted by Cr(Ã ⋆ B̃) and is defined as

Cr(Ã ⋆ B̃) =
1

2
[Pos(Ã ⋆ B̃) +Nes(Ã ⋆ B̃)] (2.6)

This measure is followed by most of the realistic DMs.
Lemma 2.1. If Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) be TFNs, then (cf. Liu [105])

Cr (Ã ≥ B̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if a1 ≥ b3

b3 + 2(a2 − b2) − a1

2(b3 − b2 + a2 − a1)
if a2 ≥ b2, a1 ≤ b3

a3 − b1

2(a3 − a2 + b2 − b1)
if a2 ≤ b2, a3 ≥ b1

0 otherwise

(2.7)

38 CHAPTER 2. SOLUTION METHODOLOGIES

Proof.

Pos(Ã ≥ B̃) = sup{min(µÃ(x), µB̃(y)), x, y ∈R, x ≥ y}

Nes(Ã ≥ B̃) = 1 − Pos(Ã ≥ B̃)

Cr(Ã ≥ B̃) =
1

2
[Pos(Ã ≥ B̃) +Nes(Ã ≥ B̃)]

(i) for a1 ≥ b3 (cf. Figure 2.4):

Pos(Ã ≥ B̃) = 1

Nes(Ã ≥ B̃) = 1 − Pos(Ã < B̃)
= 1 − 0 = 1

Hence,Cr(Ã ≥ B̃) = 1
2(1 + 1) = 1.

Figure 2.4: Membership functions

(ii) for a2 ≥ b2, a1 ≤ b3 (cf. Figure 2.5):

Pos(Ã ≥ B̃) = 1

Nes(Ã ≥ B̃) = 1 − Pos(Ã < B̃)

= 1 −
b3 − a1

a2 − a1 + b3 − b2

=
a2 − b2

a2 − a1 + b3 − b2

Hence,Cr(Ã ≥ B̃)

= 1
2[1 +

a2 − b2

a2 − a1 + b3 − b2

]

=
b3 + 2(a2 − b2) − a1

2(b3 − b2 + a2 − a1)
. Figure 2.5: Membership functions

(iii) for a2 ≤ b2, a3 ≥ b1 (cf. Figure 2.6):

(iv) In all other cases (cf. Figure 2.7):

2.1. MATHEMATICAL PREREQUISITES 39

Pos(Ã ≥ B̃) =
a3 − b1

b2 − b1 + a3 − a2

Nes(Ã ≥ B̃) = 1 − Pos(Ã < B̃)
= 1 − 1 = 0

Hence,Cr(Ã ≥ B̃)

=
a3 − b1

2(a3 − a2 + b2 − b1)
.

Figure 2.6: Membership functions

Pos(Ã ≥ B̃) = 0

Nes(Ã ≥ B̃) = 1 − Pos(Ã < B̃)
= 1 − 1 = 0

Hence,Cr(Ã ≥ B̃) = 0.

Figure 2.7: Membership functions

Lemma 2.2. If Ã = (a1, a2, a3) be a TFN with non-negative components and b be
any crisp number, then

Cr (Ã ≥ b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if b ≤ a1

2a2 − a1 − b

2(a2 − a1)
if a1 ≤ b ≤ a2

a3 − b

2(a3 − a2)
if a2 ≤ b ≤ a3

0 otherwise

(2.8)

Proof. This lemma can easily be proved, by putting b1 = b2 = b3 = b in Lemma
2.1.

Lemma 2.3. If Ã = (a1, a2, a3) be a TFN with non-negative components and b be
any crisp number, then

Cr (Ã ≤ b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if b ≥ a3

a3 − 2a2 + b

2(a3 − a2)
if a2 ≤ b ≤ a3

b − a1

2(a2 − a1)
if a1 ≤ b ≤ a2

0 otherwise

(2.9)

40 CHAPTER 2. SOLUTION METHODOLOGIES

Proof. Similar proof as Lemma 2.2.

Lemma 2.4. The fuzzy constraint Ã > B̃ is necessarily and sufficiently true, if the
credibility of the constraint, i.e., Cr(Ã > B̃) > 0.5, since Cr(Ã > B̃)+Cr(Ã > B̃) =

1.

Proof. It follows from Lemma 2.1.

Lemma 2.5. If Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) are TFNs, then Cr(Ã > B̃) > 0.5,
iff a2 > b2.

Proof. It follows from Lemma 2.1.

Fuzzy Expectation [106]: Let X̃ be any normalized fuzzy variable. The ex-
pected value of the fuzzy variable X̃ is denoted by E[X̃] and is defined by

E[X̃] = ∫
∞

0
Cr(X̃ ≥ r)dr − ∫

0

−∞
Cr(X̃ ≤ r)dr (2.10)

provided that at least one of the two integral is finite.
Lemma 2.6. If ξ̃ = (a1, a2, a3) is a TFN, then the expected value of ξ̃ is

E[ξ̃] =
1

4
(a1 + 2a2 + a3) (2.11)

Proof. Let t be a crisp number. Since ξ̃ = (a1, a2, a3) is a TFN, then it satisfies the
Eqns. (2.8) and (2.9). So, the expected value of ξ̃ can be calculated using (2.10)
as follows:

E[ξ̃] = ∫
∞

0
Cr(ξ̃ ≥ t)dt − ∫

0

−∞
Cr(ξ̃ ≤ t)dt

= ∫
a1

0
1dt + ∫

a2

a1

2a2 − a1 − t

2(a2 − a1)
dt + ∫

a3

a2

a3 − t

2(a3 − a2)
dt

=
1

4
(a1 + 2a2 + a3)

2.1.2.6 Fuzzy Differential Equation (FDE)

There are several approaches in the literature [19] to define fuzzy derivative.
The concept of fuzzy differentiation was introduced by Dubois and Prade [45].

2.1. MATHEMATICAL PREREQUISITES 41

Motivated by their study [43–45], Seikkala [169] defines fuzzy differentiation and
fuzzy integration using inclusion property of α-cuts of fuzzy numbers.

Definition: According to Seikkala [169], if Ỹ (t) be a fuzzy number for each t ∈ I(⊆
R), having α-cut, Ỹ (t)[α] = [YL(t, α), YR(t, α)] then dỸ (t)

dt exists and dỸ (t)
dt [α] =

[dYL(t,α)dt , dYR(t,α)
dt] provided [dYL(t,α)dt , dYR(t,α)

dt] are α-cuts of a fuzzy number for each
t ∈ I, i.e., if the following conditions hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dYL(t, α)

dt
and

dYR(t, α)

dt
are continuous on I × [0,1].

dYL(t, α)

dt
is an increasing function of α for each t ∈ I.

dYR(t, α)

dt
is a decreasing function of α for each t ∈ I.

dYL(t,1)

dt
≤
dYR(t,1)

dt
,∀ t ∈ I.

(2.12)

Accordingly, they define fuzzy integral
b

∫
a
Ỹ (t)dt for all a, b ∈ I having α-cut

(

b

∫
a

Ỹ (t)dt)[α] = [

b

∫
a

YL(α, t)dt,

b

∫
a

YR(α, t)dt]

provided that the integrals on the right exist. This definition of fuzzy integration
agrees with the definition of Dubois and Prade [43] and Wu [194].

Fuzzy Differential Equation-1 (FDE-1) [19]: Consider the first order ordi-
nary differential equation

dY

dt
= f(t, Y, k), Y (0) = C (2.13)

where k = (k1, k2, ...kn) is a vector of constants and t is in some interval I (closed
and bounded) which contains zero. Let the Eqn. (2.13) has a unique solution

Y = g(t, k,C), for t ∈ I, k ∈K ⊂Rn, C ∈R (2.14)

When k̃ = (k̃1, k̃2, ...k̃n) is a vector of fuzzy numbers and C̃ be another fuzzy
number, then the Eqn. (2.13) reduces to the following FDE

dỸ

dt
= f(t, Ỹ , k̃), Ỹ (0) = C̃ (2.15)

42 CHAPTER 2. SOLUTION METHODOLOGIES

assuming that derivative [19, 169] of the unknown fuzzy function Ỹ (t) exists ac-
cording to the above definition [188]. According to Buckley and Feuring [19],

Ỹ (t) = g(t, k̃, C̃) (2.16)

is solution of (2.15), if its α-cut Ỹ (t)[α] = [YL(t, α), YR(t, α)] satisfies the following
conditions (2.17) along with the conditions given by the Eqn. (2.12).

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

dYL(t, α)

dt
= fL(t, α),

dYR(t, α)

dt
= fR(t, α), ∀α ∈ [0,1].

dYL(0, α)

dt
= CL(α),

dYR(0, α)

dt
= CR(α), ∀α ∈ [0,1].

(2.17)

where, f̃(t)[α] = [fL(t, α), fR(t, α)], C̃[α] = [CL(α),CR(α)] and membership
function of Ỹ (t) is obtained using fuzzy extension principle (2.2). To justify the
validity of this solution one can see [19].

Fuzzy Differential Equation-2 (FDE-2) [26]: Consider the fuzzy initial value
problem

X̃ ′(t) = f̃(t, X̃(t)), X̃(0) = X̃0 (2.18)

where f ∶ [0, T] × F (U)→ F (Rn) is obtained by Zadeh’s extension principle (2.2)
from a continuous function g ∶ [0, T] ×U →Rn, where U ⊂Rn. As g is continuous
so f is continuous [159] and by (2.3), we have

[f(t,X)](α) = g(t,X[α])

where, g(t,A) = {g(t, a)/a ∈ A}.

Consider the deterministic differential equation (DDE) associated with (2.18)

x′(t) = g(t, x(t)), x(0) = x0 (2.19)

where x′(t) is the derivative (crisp) of a function x ∶ [0, T]→Rn. Then according
to Chalco-Cano and Román-Flores [26], a fuzzy solution for (2.15) can be derived
from (2.19) as follows

• Solve the DDE (2.19) and let x(t, x0) be its solution.

2.1. MATHEMATICAL PREREQUISITES 43

• Use Zadeh’s [209] extension principle (2.2), to x(t, x0) in relation to the
parameter x0 and obtain the extension X̃(t) = x̃(t, X̃0), for each fixed t,
which is a fuzzy solution of problem (2.18), provided conditions of following
theorem (Theorem-1) hold.

Theorem-1: Let U be an open set in Rn and X0[α] ⊂ U . Suppose that g is
continuous and that for each c ∈ U , there exists a unique solution x(., c) of the
deterministic problem (2.19) and that x(t, .) is continuous on U for each t ∈ [0, T]

fixed. Then, there exists a unique fuzzy solution X̃(t) = x̃(t,X0) of the FDE (2.18).

2.1.2.7 Fuzzy Riemann Integration (FRI)

Fuzzy Integral: The study on fuzzy integral was started before three decades.
Sims and Wang [174] gave a good review of this subject. Dubois and Prade [43]
defined integral of fuzzy mapping f̃(x) over a crisp interval I = [a, b] and proved
that under certain condition (∫I f̃)[α] = ∫I f̃[α]. In a subsequent paper, Dubois
and Prade [44] define integration of a real mapping f(x) between fuzzy bounds
D̃ = [ã, b̃]. If I = [IL, IR], where IL is the infimum of the support of ã and IR is
the supremum of the support of b̃, then according to their definition

∀z ∈R, µ
∫D̃

(z) = sup
x,y∈I

min(µã(x), µb̃(y)), under the constraint z =
y

∫
x

f(t)dt

But their definition does not include integration of fuzzy mapping over a fuzzy
domain. In a subsequent paper, Wu [194] defined integration of fuzzy mapping
over crisp and fuzzy intervals and accordingly two types of FRIs have been defined
by him.

Fuzzy Riemann Integral of type-I [194]: Let f̃(x) be a closed and bounded
fuzzy valued function on [a, b] and [fL(α,x), fR(α,x)] be α-cut of f̃(x) ∀x ∈ [a, b].
If fL(α,x) and fR(α,x) are Riemann integrable on [a, b], ∀α, then the fuzzy

Riemann integral
b

∫
a
f̃(x)dx is a closed fuzzy number and its α-level set is given by

(

b

∫
a

f̃(x)dx)[α] = [

b

∫
a

fL(α,x)dx,

b

∫
a

fR(α,x)dx]

44 CHAPTER 2. SOLUTION METHODOLOGIES

Fuzzy Riemann Integral of type-II [194]: Let f̃(x̃) be a bounded and
closed fuzzy valued function defined on the closed fuzzy interval [ã, b̃] and f̃(x)

be induced by f̃(x̃). [fL(α,x), fR(α,x)] be α-cut of f̃(x) and f̃(x) is either
nonnegative or nonpositive.

Case-1: If f̃(x) is nonnegative and fL(α,x) and fR(α,x) are Riemann in-
tegrable on [aR(α), bL(α)] and [aL(α), bR(α)] respectively ∀α, then the fuzzy

Riemann integral
b̃

∫
ã

f̃(x̃)dx̃ is a closed fuzzy number and its α-level set is given by

(

b̃

∫
ã

f̃(x̃)dx̃)[α] =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
bL(α)

∫
aR(α)

fL(α,x)dx,
bR(α)

∫
aL(α)

fR(α,x)dx] if bL(α) > aR(α)

[0,
bR(α)

∫
aL(α)

fR(α,x)dx] if bL(α) ≤ aR(α)

Case-2: If f̃(x) is non positive and fL(α,x) and fR(α,x) are Riemann integrable
on [aR(α), bL(α)] and [aL(α), bR(α)] respectively ∀α, then the fuzzy Riemann

integral
b̃

∫
ã

f̃(x̃)dx̃ is a closed fuzzy number and its α-level set is given by

(

b̃

∫
ã

f̃(x̃)dx̃)[α] =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
bR(α)

∫
aL(α)

fL(α,x)dx,
bL(α)

∫
aR(α)

fR(α,x)dx] if bL(α) > aR(α)

[
bR(α)

∫
aL(α)

fL(α,x)dx,0] if bL(α) ≤ aR(α)

2.1.3 Rough Set Theory

Rough set theory is also an excellent mathematical tool (like fuzzy set theory)
to define an object in an imprecise environment. Rough set theory deals with
vague description of objects, i.e., there are also some objects which have no such
sufficient information to characterize the objects. The concept of rough set theory
is introduced by Pawlak [144] in 1982. According to Pawlak [144], a rough set may
be defined as a pair of two crisp sets, called the lower and upper approximations of
the rough set, which are produced by an equivalence relation (reflexive, symmetric
and transitive).

In 2000, the concept of rough set theory was extended by Slowinski and Vander-
pooten [176] providing a binary similarity relation instead of equivalence relation.

2.1. MATHEMATICAL PREREQUISITES 45

According to Slowinski and Vanderpooten [176], a binary similarity relation has
no symmetry and transitivity but has reflexivity.

Lower and Upper Approximation [176]: Let U be a universe, and X be a
set representing a concept. Then its lower approximation is defined by

X = {x ∈ U ∣R−1(x) ⊂X}; (2.20)

while the upper approximation is defined by

X = ⋃
x∈X

R(x) (2.21)

where R(x) is the similarity class of objects which are similar to x and R−1(x) is
the class of objects to which x is similar.

Rough Set [144]: The collection of all sets having the same lower and upper
approximations is called a rough set and is denoted by (X,X).

Rough Space [105]: Let Λ be a nonempty set, κ be a σ-algebra of subset of Λ

and ∆ be an element in κ and π nonnegative, real-valued, additive set function.
Then (Λ,∆, κ, π) is called a rough space.

Rough Variable [105]: A rough variable ξ̌ is a measurable function from the
rough space (Λ,∆, κ, π) to the set of real numbers, i.e., for every Borel set B of
R, we have

{λ ∈ Λ ∣ ξ̌(λ) ∈ B} ∈ κ

The lower and upper approximations of the rough variable are defined as ξ̌ =

{ξ̌(λ) ∣ λ ∈ ∆} and ξ̌ = {ξ̌(λ) ∣ λ ∈ Λ} respectively.

Trust Measure [105]: Let (Λ,∆, κ, π) be a rough space. The trust measure of
event A is denoted by Tr{A} and defined by Tr{A} = 1

2(Tr{A} + Tr{A}), where
Tr{A} denotes the lower trust measure of event A, defined by Tr{A} = π{A⋂∆}

π{∆}

and Tr{A} denotes the upper trust measure of event A, defined by Tr{A} = π{A}

π{Λ}
.

When insufficient amount of information is given about the measurement of π for
a real life problem, it may be viewed as the Lebesgue measure.

Let ξ̌ = ([a, b][c, d]), c ≤ a ≤ b ≤ d be a rough variable and Lebesgue measure
is used for trust measure of an rough event associated with ξ̌ ≥ t. Then the trust

46 CHAPTER 2. SOLUTION METHODOLOGIES

Figure 2.8: Tr{ξ̌ ≥ t} function

measure of the rough event ξ̌ ≥ t is denoted by Tr{ξ̌ ≥ t} and its function curve
(cf. Figure 2.8) is presented below:

Tr{ξ̌ ≥ t} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for d ≤ t
d−t

2(d−c) for b ≤ t ≤ d,
1
2
(d−t
d−c +

b−t
b−a

) for a ≤ t ≤ b,
1
2
(d−t
d−c + 1) for c ≤ t ≤ a,

1 for t ≤ c

(2.22)

Also the trust measure of the rough event ξ̌ ≤ t is denoted by Tr{ξ̌ ≤ t} and its
function curve (cf. Figure 2.9) is presented below:

Figure 2.9: Tr{ξ̌ ≤ t} function

2.1. MATHEMATICAL PREREQUISITES 47

Tr{ξ̌ ≤ t} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t ≤ c
t−c

2(d−c) for c ≤ t ≤ a,
1
2
(t−c
d−c +

t−a
b−a

) for a ≤ t ≤ b,
1
2
(t−c
d−c + 1) for b ≤ t ≤ d,

1 for d ≤ t

(2.23)

Lemma 2.7. If Ǎ = ([a1, a2][a3, a4]) and B̌ = ([b1, b2][b3, b4]) be rough variables,
then according to Liu [105], Pramanik et al. [150]

Tr{Ǎ ≥ B̌} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for a4 ≤ b3

a4 − b3

2(a4 − a3 + b4 − b3)
for a2 ≤ b1, b3 ≤ a4

1

2
[

a4 − b3

a4 − a3 + b4 − b3

+
a2 − b1

a2 − a1 + b2 − b1

] for a1 ≤ b2, b1 ≤ a2

1

2
[

a4 − b3

a4 − a3 + b4 − b3

+ 1] for a3 ≤ b4, b2 ≤ a1

1 for b4 ≤ a3

(2.24)

Lemma 2.8. The rough constraint Ǎ > B̌ is necessarily and sufficiently true, if
the trust measure of the constraint, i.e., Tr(Ǎ > B̌) > 0.5, since Tr(Ǎ > B̌) +

Tr(Ǎ > B̌) = 1.

Proof. It follows from Lemma 2.7.

Lemma 2.9. For any two rough variables Ǎ = ([a1, a2][a3, a4]) and B̌ = ([b1, b2][b3,

b4]), if a1 > b1, a2 > b2, a3 > b3, a4 > b4 holds, then Tr(Ǎ > B̌) > 0.5.

Proof. It follows from Lemma 2.7.

Rough Expectation [105]: let X̌ be a rough variable. The the expected value
of the rough variable X̌ is denoted by E[X̌] and is defined by

E[X̌] = ∫
∞

0
Tr(X̌ ≥ r)dr − ∫

0

−∞
Tr(X̌ ≤ r)dr (2.25)

provided that at least one of the two integrals is finite.
Lemma 2.10. [105] Let ξ̌ = ([a, b][c, d]) be a rough variable, where c > 0. Then
expected value of ξ̌ is

E[ξ̌] =
1

4
(a + b + c + d) (2.26)

48 CHAPTER 2. SOLUTION METHODOLOGIES

Proof. Let t be a crisp number. Since ξ̌ = ([a, b][c, d]) is a rough variable, then
it satisfies the trust measure function curve (2.22) and (2.23). So, the expected
value of ξ̌ can be calculated using (2.25) as follows:

E[ξ̌] = ∫
∞

0
Tr(ξ̌ ≥ t)dt − ∫

0

−∞
Tr(ξ̌ ≤ t)dt

= ∫
c

0
1dt + ∫

a

c

1

2
(
d − t

d − c
+ 1)dt + ∫

b

a

1

2
(
d − t

d − c
+
b − t

b − a
)dt + ∫

d

b

d − t

2(d − c)
dt

=
1

4
(a + b + c + d)

2.1.4 Interval and some useful properties

An interval I in R is a subset of R having two bounds IL, IR and defined as
I = {x ∈ R∣IL ≤ x ≤ IR}. IL and IR are termed as left and right bounds of I
respectively and the interval is represented by I = [IL, IR]. It’s mean and half-
width (for simplicity, it is called width) are denoted bym(I) and w(I) respectively
and are defined asm(I) = (IL+IR)/2 and w(I) = (IR−IL)/2. An interval I can also
defined by its mean m(I) and width w(I) as < m(I),w(I) >, i.e., I = [IL, IR] ≡<

m(I),w(I) >. Clearly, α-cut of a fuzzy number with continuous membership
function can be treated as an interval.

Arithmetic of Interval: Let ⋆ ∈ {+,−, ., /} be a binary operation on the set of
positive real numbers. If A = [AL,AR] and B = [BL,BR] are two closed intervals,
then according to Moore [128]:

A ⋆B = {x ⋆ y ∶ x ∈ A,y ∈ B}

2.1. MATHEMATICAL PREREQUISITES 49

Some important arithmetic operations on the closed intervals are summarized as
below:

A +B = [AL,AR] + [BL,BR] = [AL +BL,AR +BR]

A −B = [AL,AR] − [BL,BR] = [AL −BR,AR −BL]

A.B = [AL,AR].[BL,BR]

= [Min{ALBL,ALBR,ARBL,ARBR},Max{ALBL,ALBR,ARBL,ARBR}]

A/B = [AL,AR]/[BL,BR] = [AL,AR].[
1

BR

,
1

AR
], where 0 ∉ B

kA =

⎧⎪⎪
⎨
⎪⎪⎩

[kAL, kAR], for k ≥ 0

[kAR, kAL], for k < 0, where k is a real number.

2.1.5 Ranking of intervals

Several approaches are proposed by different researchers for ordering intervals.
Sengupta and Pal [170] presented a detailed comparison of different approaches
together with their merits and demerits. In this thesis, the interval comparison
approach, Fuzzy Preference Ordering (FPO) of intervals, made by Sengupta and
Pal [170] is used and discussed below.

Fuzzy Preference Ordering (FPO) of intervals: According to Sengupta and
Pal [170], the interval ordering scheme, FPO, is the most efficient interval ranking
approach. They consider the following trivial assumptions for any maximization
problem involving interval objectives.

1. More profit is better than less profit.

2. More certainty is better than less certainty.

3. If more profit is associated with more uncertainty, a DM undergoes a trade-
off between the two.

4. To a pessimistic DM, assumption 2 is somewhat more important than as-
sumption 1 (Obviously to an optimistic DM, assumption 1 is somewhat more
important than assumption 2).

Following these assumptions, when profits are represented by intervals, they
ordered any pair of profit intervals A and B, as (A,B) or (B,A) according as

50 CHAPTER 2. SOLUTION METHODOLOGIES

m(A) ≤m(B) or m(A) ≥m(B) and then classified the order pair of intervals into
two sets S1 and S2 as follows:

1. S1 = {(A,B)∣m(A) ≤m(B),w(A) ≥ w(B)}

2. S2 = {(A,B)∣m(A) ≤m(B),w(A) ≤ w(B)}

Figure 2.10: Membership function of rejection of B for the pair of intervals
(X,B) in S2

Then for a maximization problem, for any two profit intervals A, B, any one of
the following two cases may arises assuming m(A) ≤m(B):

• For (A,B) ∈ S1 unless A and B are identical, B is always the best choice.
Here m(A) ≤ m(B), i.e., mean profit due to B is greater than mean profit
due to A. Moreover w(A) ≥ w(B) implies uncertainty in the choice of A is
more than that of B. So obviously B is best choice.

• If (A,B) ∈ S2 then DM is in dilemma. In this case though mean profit due
to B is better than that of A, uncertainty in the choice of A is more than
that of B. So there is a trade off between uncertainty and mean profit and
hence indifference between A and B occurs. According to Sengupta and
Pal [170] depending upon the order of priority between mean and width,
fuzzy preference between A and B may be constructed to resolve the case of
indifference between A and B.

In order to develop fuzzy preference between the indifference pair (X,B) in S2, a
fuzzy set R(B) as rejection of B compared to X in S2 is defined as

R(B) = {(X,B) ∈ S2∣X = [XL,XR],m(X) ≤m(B), w(X) < w(B)}

2.1. MATHEMATICAL PREREQUISITES 51

with membership function µR(B)(X,B) (µR(B) being a function S2 → [0,1]), given
by (cf. Figure 2.10)

µR(B)(X,B) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if m(X) =m(B)

max{0, m(X)−(BL+w(X))

m(B)−(BL+w(X))
} if m(B) ≥m(X) ≥ (BL +w(X))

0 otherwise.

Clearly membership function depends on the mean values and uncertainty (width)
of the intervals. According to the above definition following conclusions are obvi-
ous:

• If µR(B)(X,B) = 1, B is definitely rejected compare to X. This is because in
this case m(X) =m(B) but w(X) < w(B), i.e., though mean profit in both
the cases is same uncertainty in B is more compared to X and hence X is
accepted.

• If µR(B)(X,B) = 0, B is definitely accepted compared to X, as in this case
XL < BL, XR < BR together with m(X) <m(B).

• If µR(B)(X,B) ∈ (0,1), B is accepted/rejected according to DM’s preference.
If µR(B)(X,B) is nearly 1, m(X) is nearly equal to m(B) moreover uncer-
tainty in B compared to X is high and hence B may be rejected. But, if
µR(B)(X,B) is nearly 0, XL is nearly equal to BL. Moreover m(X) <m(B),
w(X) < w(B), so X contained in the lower part of B. Clearly, in this case
profit due to B will not be worsen than X in any situation and hence B
should be accepted compared toX. For other values of µR(B)(X,B) rejection
of B compared to X depends upon the DM’s choice. Optimistic DM will re-
ject B compared to X for large values of µR(B)(X,B) only but, a pessimistic
DM will rejectB compared toX for small values of µR(B)(X,B). To solve the
proposed model, it is assumed that if µR(B)(X,B) ≥ 0.5, B is rejected com-
pared to X. Here B is rejected compared to X if XL+αw(X) ≥ BL+αw(B),
where α = 0.5, i.e., if XL +m(X) ≥ BL +m(B).

52 CHAPTER 2. SOLUTION METHODOLOGIES

2.2 Solution Methods/Techniques in Crisp Envi-

ronment

Any real life problem involves some objectives and normally there exists some
restrictions (constraints) which prevents to reach the objective goal. The decision
maker needs proper decision to face the problem, normally called optimal decision.
The decisions may be logical or numeric. For numeric decisions, the problem
involves some decision variables (real valued) and some objectives (functions of
the decision variables) which have to be optimized (minimized or maximized)
under some constraints. The problem involving only one such objective under
some constraints is known as single objective optimization problem (SOOP) as
presented below:

Find x = (x1, x2, ..., xn)T

which maximizes/minimizes f(x)
subject to x ∈X

where X =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

x ∶

gi(x) ≤ 0, i = 1,2, ..., l

hj(x) = 0, j = 1,2, ...,m

xk ≥ 0, k = 1,2, ..., n

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.27)

where, f(x), gi(x), i = 1,2, ..., l and hj(x), j = 1,2, ...,m are functions defined on
n-dimensional set.

It is noted that, when both the objective function and constraints are linear,
the above SOOP becomes a single objective linear optimization problem (SOLOP).
Otherwise, it is a single objective non-linear optimization problem (SONLOP).

A decision variable vector x satisfying all the constraints is called a feasible
solution to the problem. The collection of all such solutions forms a feasible region.
The SOOP (2.27) is to find a feasible solution x∗ such that for each feasible point
x, f(x) ≤ f(x∗) for maximization problem and f(x) ≥ f(x∗) for minimization
problem. Here, x∗ is called an optimal solution or solution to the problem.

Local Minimum: x∗ ∈X is said to be a local minima of (2.27), if there exists an
ε > 0 such that f(x) ≥ f(x∗), ∀x ∈X ∶ ∣x − x∗∣ < ε.

Convex Function: A function f(x1, x2, ..., xn) is convex, if the Hessian Matrix,
given by H(x1, x2, ..., xn) = [∂2f

∂xi∂xj
]
n×n

, is positive semi-definite/positive definite.

2.2. SOLUTION METHODS/TECHNIQUES IN CRISP ENVIRONMENT 53

Global Minimum: x∗ ∈ X is said to be a global minima of (2.27), if f(x) ≥

f(x∗), ∀x ∈X. Otherwise, if the function f(x) is convex then the local minimum
solution x ∈X is global minimum.

Convex Programming Problem: The problem defined in (2.27) is said to be
convex programming problem, if the objective function f(x1, x2, ..., xn) and the
constraint functions gi(x1, x2, ..., xn), i = 1,2, ...,m are convex.

For the solution of SONLOP by any available non-linear programming (NLP)
method, local optimal solutions are guaranteed. Also, it is known that, a local
minimum/maximum solution is a global minimum/maximum for a convex/concave
optimization (i.e., a NLP problem to minimize a convex function or to maximize
a concave function) problem.

Lot of mathematical techniques based on linearization, gradient based, evolu-
tionary algorithms, stochastic search algorithms etc., are available in the literature
to solve such type of SONLOP. Here, few methods are illustrated, which have been
used in this thesis to solve the inventory problems, non-linear in nature.

Necessary Condition for Optimality: If a function f(x) is defined for all
x ∈ X and has a relative minimum at x = x∗, where x∗ ∈ X and all the partial
derivatives ∂f(x)

∂xr
for r = 1,2, ..., n are exists at x = x∗, then ∂f(x∗)

∂xr
= 0.

Sufficient Condition for Optimality: The sufficient condition for a stationary
point x∗ to be an extreme point is that the matrix of second order partial deriva-
tives (Hessian Matrix) of f(x) evaluated at x = x∗ is (i) positive definite, when
x∗ is a relative minimum point, and (ii) negative definite, when x∗ is a relatively
maximum point.

For the solution of a SONLOP, there exists a lot of mathematical techniques in
the literature based on linearisation, use of gradient etc. But these techniques are
not suitable for searching solutions of real life decision making problems involving
several variables and constraints in a reasonable time window. Moreover, these
techniques are not capable to find the solutions of the optimisation problems in
imprecise environments. To overcome these situations, the researchers develop
various heuristic search algorithms, meta heuristic search algorithms, stochastic
search algorithms etc., which are available in the literature. In this thesis, to solve
the continuous non-linear optimization problems some soft computing approaches/

54 CHAPTER 2. SOLUTION METHODOLOGIES

techniques have been proposed/developed; their efficiency in solving the real life
SOOPs are tested and illustrated.

2.2.1 Classical Optimization Technique

The classical optimization techniques are very useful to obtain optimal solu-
tion of the problems involving continuous and differentiable functions. This type
of techniques are analytical in nature and hence the exact results can be found.
Maximum and minimum points for unconstrained and constrained continuous ob-
jective functions can be obtained using these techniques. These techniques have
some limitations. The problems in crisp environment can be solved using these
techniques, but the problems in imprecise environment (fuzzy, rough etc.) can not
be solved. One of these methods is discussed below:

2.2.1.1 Generalized Reduced Gradient (GRG) Technique

The GRG technique is a method for solving NLP problems for handling equality
as well as inequality constraints. Consider the NLP problem:

Find x = (x1, x2, ...xn)T

which maximizes f(x)
subject to x ∈X

where X =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

x ∶

gi(x) ≤ 0, i = 1,2, ..., l

hj(x) = 0, j = 1,2, ...,m

xk ≥ 0, k = 1,2, ..., n

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.28)

By adding a non-negative slack variable si (≥ 0), i = 1,2, ..., l to each of the
above inequality constraints, the problem (2.28) can be stated as

Maximize f(x)

subject to x ∈X

where X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∶

x = (x1, x2, ..., xn)T

gi(x) + si = 0, i = 1,2, ..., l

hj(x) = 0, j = 1,2, ...,m

xk ≥ 0, k = 1,2, ..., n

si ≥ 0, i = 1,2, ..., l

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.29)

2.2. SOLUTION METHODS/TECHNIQUES IN CRISP ENVIRONMENT 55

where, the lower and the upper bounds on the slack variables, si, i = 1,2, ..., l are
taken as a zero and a large number (infinity) respectively.

Denoting si by xn+i, gi(x) + si by ξi, hj(x) by ξl+j, the above problem can be
rewritten as

Maximize f(x)

subject to x ∈X

where X =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

x ∶

x = (x1, x2, ..., xn+l)T

ξi(x) = 0, i = 1,2, ..., l +m

xk ≥ 0, k = 1,2, ..., n + l

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.30)

This GRG technique is based on the idea of elimination of variables using the
equality constraints. Theoretically, (l +m) variables (dependent variables) can be
expressed in terms of remaining (n −m) variables (independent variables). Thus
one can divide the (n + l) decision variables arbitrarily into two sets as

x = (y, z)T

where, y is (n − m) design or independent variables and z is (l + m) state or
dependent variables and

y = (y1, y2, ..., yn−m)T

z = (z1, z2, ..., zl+m)T

Here, the design variables are completely independent and the state variables
are dependent on the design variables used to satisfy the constraints

ξi(x) = 0, i = 1,2, ..., l +m

Consider the first variations of the objective and constraint functions:

df(x) =
n−m

∑
i=1

∂f

∂yi
dyi +

l+m

∑
i=1

∂f

∂zi
dzi = ∇

T
y f dy +∇

T
z f dz (2.31)

dξi(x) =
n−m

∑
j=1

∂ξi
∂yj

dyj +
l+m

∑
j=1

∂ξi
∂zj

dzj

or dξ = C dy +Ddz (2.32)

56 CHAPTER 2. SOLUTION METHODOLOGIES

where, ∇T
y f = (∂f

∂y1
, ∂f∂y2 , ...,

∂f
∂yn−m

) and ∇T
z f = (∂f

∂z1
, ∂f∂z2 , ...,

∂f
∂zl+m

).

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ξ1

∂y1

...
∂ξ1

∂yn−m

∂ξ2

∂y1

...
∂ξ2

∂yn−m
...

...
∂ξl+m
∂y1

...
∂ξl+m
∂yn−m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ξ1

∂z1

...
∂ξ1

∂zl+m

∂ξ2

∂z1

...
∂ξ2

∂zl+m
...

...
∂ξl+m
∂z1

...
∂ξl+m
∂zl+m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

dy = (dy1, dy2, ..., dyn−m)T

and dz = (dz1, dz2, ..., dzl+m)T

Assuming that the constraints are originally satisfied at the vector x (ξ(x) = 0),
any change in the vector dx must correspond to dξ = 0 to maintain feasibility at
x + dx. Thus, the Eqn. (2.32) can be solved as

Cdy +Ddz = 0

or dz = −D−1Cdy (2.33)

The change in the objective function due to the change in x is given by the Eqn.
(2.31), which can be expressed, using Eqn. (2.33) as

df(x) = (∇T
y f −∇

T
z fD

−1C)dy

or
df(x)

dy
= GR

where, GR = ∇T
y f −∇

T
z fD

−1C

is called the generalized reduced gradient. Geometrically, the reduced gradient can
be described as a projection of the original n-dimensional gradient into the (n− l)

dimensional feasible region described by the design variables.

A necessary condition for the existence of minimum of an unconstrained func-
tion is that the components of the gradient vanish. Similarly, a constrained func-
tion assumes its minimum value when the appropriate components of the reduced
gradient are zero. In fact, the reduced gradient GR can be used to generate a

2.2. SOLUTION METHODS/TECHNIQUES IN CRISP ENVIRONMENT 57

search direction S to reduce the value of the constrained objective function. Sim-
ilarly, to the gradient ∇f that can be used to generate a search direction S for an
unconstrained function. A suitable step length λ is to be chosen to minimize the
value of f(x) along the search direction. For any specific value of λ, the dependent
variable vector z is updated using Eqn. (2.33). Noting that the Eqn. (2.32) is
based on using a linear approximation to the original non-linear problem, so the
constraints may not be exactly equal to zero at λ, i.e., dξ ≠ 0. Hence, when y is
held fixed, in order to have

ξi(x) + dξi(x) = 0, i = 1,2, ..., l +m (2.34)

following must be satisfied.

ξ(x) + dξ(x) = 0 (2.35)

Using Eqn. (2.32) for dξ in Eqn. (2.35), following is obtained

dz =D−1(−ξ(x) −Cdy) (2.36)

The value dz given by Eqn. (2.36) is used to update the value of z as

zupdate = zcurrent + dz (2.37)

The constraints evaluated at the updated vector x, and the procedure of finding
dz using Eqn. (2.37) is repeated until dz is sufficiently small.

2.2.2 Soft Computing Techniques

Nowadays to solve the complicated real life problems, the researchers are at-
tracted by different heuristic optimization techniques, which provide the efficient
and stable solution to the problems. Among the basic heuristic approaches, Ge-
netic Algorithm (GA) and Particle Swarm Optimization (PSO) are mostly used
for different optimisation problems of science and technology due to the generality
of the algorithms [10, 51, 70, 89]. During the last decade different inventory mod-
els involving several variables and constraints are solved using various heuristic

58 CHAPTER 2. SOLUTION METHODOLOGIES

techniques by several researchers [52, 108, 112]. Also the stochastic search algo-
rithms such as Simulated Annealing (SA) provide an efficient feasible solution to
the complex problems [111]. Recently, Karaboga [90] developed a meta heuristic
mimicking the foraging behaviour/nature of honey bees and named as Artificial
Bee Colony (ABC) algorithm. From the literature, it is observed that the al-
gorithm is not only efficient it also provide the solution upto a desired number
of decimal presentation. In this thesis, for the optimization purpose, some well
known heuristic algorithms have been implemented and also some hybrid heuris-
tic/meta heuristic approaches have been developed and implemented. These are
briefly discussed below.

2.2.2.1 Particle Swarm Optimization (PSO) Technique

Particle Swarm Optimization (PSO) is a heuristic search algorithm was devel-
oped by Kennedy and Eberhart [92] in mid-nineties of the last century by mimick-
ing the natural behaviour of a folk of birds searching for their food sources. A folk
of birds normally search for their food sources depending upon their own experi-
ences and the best experience among the birds. Same phenomenon is mimicked to
create a PSO. The algorithm is suitable for maximization as well as minimization
problems. Consider such an optimization problem having objective function f(X)

and decision vector X = (x1, x2, ..., xn). In a PSO [53] algorithm, optimal solution
is analogous to the food source, position of a bird is compared with a potential
solution, velocity of a bird is used to find its neighbour position, i.e., neighbour
(perturbed) solution. As folk of birds together search for their food sources and
position of a bird is compared with a potential solution, a set of randomly gener-
ated potential solutions P (0) is used in the algorithm for searching the optimal
solution and is called initial swarm. Let P (0) = {X1(0),X2(0), ...,XN(0)}, i.e.,
swarm consists of N potential solutions X1(0), X2(0), ..., XN(0). Here 0 repre-
sent iteration number, t, i.e., initially t = 0. Each solution (bird/particle) Xi(t)

has a velocity of movement Vi(t), where Vi(0) is initialised with some value. Each
particle Xi(t) has also its own best position of movement Xbesti(t). Best position
found by the swarm is stored in another vector Xgbest(t). In each iteration t, po-
sition of a particle Xi(t) and velocity Vi(t) are updated to Xi(t + 1) and Vi(t + 1)

using Xbesti(t), Xgbest(t), Xi(t) and Vi(t). The rules used for the purpose are as

2.2. SOLUTION METHODS/TECHNIQUES IN CRISP ENVIRONMENT 59

follows:

Vi(t + 1) = wVi(t) + µ1r1(Xpbesti(t) −Xi(t)) + µ2r2(Xgbest(t) −Xi(t)) (2.38)

Xi(t + 1) = Xi(t) + Vi(t + 1) (2.39)

The parameter ω (0 < ω < 1), known as the inertia weight which controls the
influence of previous velocity on the new velocity. Here, the value of ω is taken
as 0.7298. The parameters µ1 and µ2 are set to the constant values, which are
normally taken as 2. In this thesis, the values of µ1 and µ2 are considered as
1.49618. r1 and r2 are two random values uniformly distributed in [0,1]. The
algorithm for the implementation of the optimization technique is given below,
where it is assumed thatN is the number of particles. Vmax represent the maximum
velocity of a particle, Bil(t) and Biu(t) represent the lower boundary and the upper
boundary of i-th variable respectively. check_constraint function check whether
the solution Xi(t) satisfies the constraints of the problem or not. It returns 1 if
the solution Xi(t) satisfies the constraints of the problem, otherwise it returns 0.

PSO Algorithm:

1. Initialize w, µ1, µ2, N , Vmax and Maxgen.

2. Set iteration counter t = 0 and randomly generate initial swarm P (t) of N
particles (solutions).

3. Determine objective value of each solution Xi(t) and find Xgbest(t) using dom-
inance property.

4. Set initial velocity Vi(t), ∀Xi(t) ∈ P (t) and set Xpbesti(t) = Xi(t), ∀Xi(t) ∈

P (t).

5. While (t <Maxgen) do

6. For i = 1 ∶ N do

7. Vi(t + 1) = wVi(t) + µ1r1(Xpbesti(t) −Xi(t)) + µ2r2(Xgbest(t) −Xi(t))

8. If (Vi(t + 1) > Vmax), then set Vi(t + 1) = Vmax

9. If (Vi(t + 1) < −Vmax), then set Vi(t + 1) = −Vmax

10. Xi(t + 1) =Xi(t) + Vi(t + 1)

11. If (Xi(t + 1) > Biu(t)), then set Xi(t + 1) = Biu(t)

12. If (Xi(t + 1) < Bil(t)), then set Xi(t + 1) = Bil(t)

13. If check_constraint (Xi(t + 1)) = 0

14. Set Xi(t + 1) =Xi(t), Vi(t + 1) = Vi(t)

15. Else

60 CHAPTER 2. SOLUTION METHODOLOGIES

16. If Xi(t + 1) dominates Xpbesti(t), then set Xpbesti(t + 1) =Xi(t + 1)

17. If Xi(t + 1) dominates Xgbest(t), then set Xgbest(t + 1) =Xi(t + 1)

18. End If

19. End For

20. Set t = t + 1

21. End While

22. Output: Xgbest(t)

23. End Algorithm

Different procedures of the PSO:

(a) Representation of solutions: A n-dimensional real vector, Xi = (xi1, xi2, ...,

xin), is used to represent i-th solution, where xi1, xi2, ... , xin represent n decision
variables of the decision making problem under consideration.

(b) Initialization: N such solutions Xi = (xi1, xi2, ...xin), i = 1,2, ...,N, are ran-
domly generated by random number generator within the boundaries of each vari-
able [Bjl,Bju], j = 1,2, ..., n. Initialize (P (0)) subfunction is used for this purpose.

(c) Dominance property: For crisp maximization problem, a solution Xi dom-
inates a solution Xj, if the objective value due to the the solution Xi is grater
than that of Xj. Using this dominance property, PSO can be used to optimize
optimization problem with crisp as well as imprecise (fuzzy, rough etc.) objective.

For fuzzy objective, let Z̃i and Z̃j be the objective values due to the solutions
Xi and Xj respectively. Then Xi dominates Xj, if Cr(Z̃i > Z̃j) > 0.5. This is a
valid comparison operator as Cr(Z̃i > Z̃j) + Cr(Z̃i ≤ Z̃j) = 1. Here credibility of
an event is made by the formula (2.7).

For rough objective, let Ži and Žj be the objective values due to the solutions
Xi and Xj respectively. Then Xi dominates Xj, if Tr(Ži > Žj) > 0.5. This is a
valid comparison operator as Tr(Ži > Žj) + Tr(Ži ≤ Žj) = 1. Here trust measure
of an event is made by the formula (2.24).

(d) Parameter setting and Implementation: With the above function and
values, the algorithm is implemented using C-programming language. Different
parametric values of the algorithm used to solve some models of this dissertation
are set using Taguchi approach [204] (cf. § 2.2.2.2) and Engelbrecht [53] as follows:
N = 20, Vmax = 0.15, µ1 = 1.49618, µ2 = 1.49618, w = 0.7298, Maxgen = 500.

2.2. SOLUTION METHODS/TECHNIQUES IN CRISP ENVIRONMENT 61

To test the performance of the proposed PSO, it is tested against a set of
benchmark test problems available in the literature and are listed below. The
results of the test function are presented in Table 2.1. From Table 2.1, it is clear
that the implemented PSO is efficient enough to solve continuous optimisation
problems.

List of Test Functions (TF)

TF-1: (Taken from [11]):

SH(x1, x2) =
5

∑
j=1
j × cos[(j + 1) × x1 + j] ×

5

∑
j=1
j × cos[(j + 1) × x2 + j],

−10 ≤ x1, x2 ≤ 10. This problem has 760 local minima and 18 global minima.
At global minima (x1, x2), SH(x1, x2) = −186.7309.

TF-2: (Taken from [11]):
MZ(x1, x2, ..., xn) = −

n

∑
i=1
sin(xi).[sin(i.(xi)2/π)]2m, −π ≤ x1, x2, ..., xn ≤ π,

where m = 10. For n = 2, it has one global minima at (x1, x2) = (2.25,1.57)

and MZ(2.25,1.57) = −1.80.

TF-3: (Taken from [11]):
F2(x1, x2) = 100 × (x2

2 − x1) + (1 − x1), −2.048 ≤ x1, x2 ≤ 2.048. It has one
minima at (x1, x2) = (2.048,0) and F2(2.048,0) = −205.8480.

TF-4: (Taken from [11]):
DJ(x1, x2, x3) = x2

1 + x
2
2 + x

2
3, −5.12 ≤ x1, x2, x3 ≤ 5.12.

It has one global minima at (x1, x2, x3) = (0,0,0) and DJ(0,0,0) = 0.

TF-5: (Taken from [123]):
F (x1, x2) = 100(x2 − x2

1)
2 + (x1 − 1)2, such that x1 + x2

2 ≥ 0, x2
1 + x2 ≥ 0,

−0.5 ≤ x1 ≤ 0.5, −1.0 ≤ x2 ≤ 1.0.
It has one global minima at (x1, x2) = (0.5,0.25) and F (0.5,0.25) = 0.25.

2.2.2.2 Tuning of PSO parameter using Taguchi method

To solve the problems of some models of the thesis, PSO technique is used.
In PSO, some parameters are used which are swarm size (N), velocity (Vmax) for
the movement of the solution, some constants (µ1, µ2, w). If the values of these
parameters are changed, then the number of function evaluations vary. So, there
is need to set (tuning) the parameters so that the number of function evaluations
is minimized. To tuning these parameters, Taguchi method [204] is used.

62 CHAPTER 2. SOLUTION METHODOLOGIES

Table 2.1: Results of Test Functions following PSO Approach

TF Results Obtained % of Success for 50 Runs Average Error

TF-1 SH(x∗) = −186.7309 96 0.022040

TF-2 MZ(2.2029,1.5708) = −1.8013 68 0.256416

TF-3 F2(2.048,−0.0002) = −205.8480 100 0

TF-4 DJ(0,0,0) = 0 100 0

TF-5 F (0.5,0.25) = 0.25 100 0
For TF-1, 18 global minima (obtained by PSO approach) are

x∗ = [(−7.0835,4.8581), (4.8581,5.4828), (−7.7083,−0.8003), (5.4829,−7.7083), (−7.0835,−1.4251),
(−1.4251,−7.0835), (−0.8004,−1.4251), (4.8580,−0.8003), (−0.8004,4.8580), (5.4829,4.8581),
(5.4829,−1.4251), (−7.0835,−7.7083), (4.8581,−7.0835), (−1.4251,5.4829), (−0.8003,−7.7084),

(−1.4251,−0.8003), (−7.7083,−7.0835), (−7.7084,5.4829)]

Table 2.2: PSO parameters and their levels

Symbol PSO parameter Level-1 Level-2 Level-3

A swarm size (N) 20 30 40

B velocity (Vmax) 0.05 0.10 0.15

C constant (µ1=µ2) 1.45 1.49618 1.55

D constant (w) 0.71 0.7298 0.75

Table 2.3: L9 orthogonal array

Run PSO parameter

A B C D

swarm size (N) velocity (Vmax) constant (µ1=µ2) constant (w)

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 3 2

5 2 2 1 3

6 2 3 2 1

7 3 1 2 3

8 3 2 3 1

9 3 3 1 2

In Taguchi method, there is need to set the levels of the parameters of PSO
at first, which are shown in Table 2.2. A three-level PSO parameter counts for
two degrees of freedom. Therefore, there are total eight degrees of freedom for
the four PSO parameters. The degrees of freedom for the orthogonal array should
be greater than or at least equal to those for the design parameters. So, in the
present study, an L9 orthogonal array (cf. Table 2.3) is selected. This array has
four columns and nine rows. The degrees of freedom of this array is eight. Each
PSO parameter is assigned to a column and nine combinations of the parameters
are required for L9 orthogonal array.

2.2. SOLUTION METHODS/TECHNIQUES IN CRISP ENVIRONMENT 63

Table 2.4: Required number of function evaluation in different seeds and S/N
ratio

Run Symbol Function Evaluation S/N ratio

A B C D Seed-1 Seed-2 Seed-3

1 20 0.05 1.45 0.71 1260 1320 1700 -63.17

2 20 0.10 1.49618 0.7298 640 900 1080 -59.01

3 20 0.15 1.55 0.75 940 1000 920 -59.59

4 30 0.05 1.55 0.7298 1380 1200 2310 -64.61

5 30 0.10 1.45 0.75 1080 1200 1290 -61.53

6 30 0.15 1.49618 0.71 1230 960 1110 -60.87

7 40 0.05 1.49618 0.75 1800 2040 2280 -66.23

8 40 0.10 1.55 0.71 2080 1520 1840 -65.24

9 40 0.15 1.45 0.7298 880 1000 1600 -61.60

For the above combinations of the parameters, the number of function evalua-
tions to find optimal decision in different seeds of the random number generator
are tabulated in Table 2.4 and also these numbers are transformed into a signal-
to-noise (S/N) ratio by the following formula.

η = −10log(M.S.D.) (2.40)

where, M.S.D. is the mean square deviation for the output characteristic.

There are three types of quality characteristic: the-lower-the-better, the-higher-
the-better and the-nominal-the-better [204]. Here, the number of function evalu-
ation is the-lower-the-better quality characteristic. The M.S.D. for this character-
istic is calculated by the following formula.

M.S.D. =
1

m

m

∑
i=1

S2
i (2.41)

where, Si is the value of the number of function evaluation for the i-th test.

The mean S/N ratio for each level of each parameter is summarized and called
the S/N response table for the number of function evaluation (cf. Table 2.5). For
example, the mean S/N ratio for the parameter swarm size (N) at levels 1, 2 and
3 can be calculated by averaging the S/N ratios for the run {1,2,3}, {4,5,6} and
{7,8,9} respectively and so on for the other parameters.

Finally, the ANOVA test is done to investigate which design parameters sig-
nificantly affect the quality characteristic. From Table 2.6, it is observed that the

64 CHAPTER 2. SOLUTION METHODOLOGIES

Table 2.5: S/N response table for function evaluation

Symbol PSO parameter Mean S/N ratio

Level-1 Level-2 Level-3 (Max - Min)

A swarm size (N) -60.59 -62.34 -64.36 3.77

B velocity (Vmax) -64.67 -61.93 -60.69 3.98

C constant (µ1=µ2) -63.09 -61.74 -62.45 1.35

D constant (w) -62.10 -62.04 -63.15 1.11

Table 2.6: Results of the ANOVA for function evaluation

Symbol PSO parameter df SSB MSB SSW MSW F -ratio

A swarm size (N) 2 21.36 10.68 30.01 5.00 2.13

B velocity (Vmax) 2 24.88 12.44 26.40 4.40 2.83

C constant (µ1=µ2) 2 2.74 1.37 48.58 8.10 0.17

D constant (w) 2 2.34 1.17 49.00 8.17 0.14

values of F-ratio of each parameter is less than the value of F (2,6) = 5.14. So,
the change of the parameters are insignificant on the quality characteristic. Based
on the S/N and ANOVA analyses, the optimal PSO parameters for the number
of function evaluation are the swarm size (N) at level-1, the velocity (Vmax) at
level-3, the constants (µ1 = µ2) at level-2 and the constant (w) at level-2. Due to
this reason, this parametric set is used to find marketing decision of the models.

2.2.2.3 Multi-choice Artificial Bee Colony (MCABC) Algorithm

Mimicking the foraging behaviors of honey bee colonies, ABC algorithm was
introduced by Karaboga [90] for solving continuous optimization problems. During
last decade it has been modified by several researchers to improve its performance
and it’s different variants are available in the literature [82, 96, 211]. An ABC
algorithm normally starts with a set of randomly generated potential solutions in
the search space of the optimization problem under consideration. A solution is
treated as a food source and the optimal solution is the best food source. It is an
iterative search approach, where each iteration consists of three phases – employee
bee phase, onlooker bee phase and scout bee phase. Each food source (potential
solution) is associated with an employee bee, i.e., the number of solutions equal
to the number of employee bees. Each employee bee tries to find a better food
source, i.e., tries to find a better neighbour solution using some search strategies.
After operations of all the employee bees, i.e., after employee bee phase, onlooker
bee phase starts. Number of onlooker bees is fixed and each bee chooses a solution

2.2. SOLUTION METHODS/TECHNIQUES IN CRISP ENVIRONMENT 65

(food source) from the solution set according to their fitness and tries to find a
better neighbour solution using some search strategies. After operation of each
onlooker bee, scout bee phase starts. Each solution is associated with a counter
which keeps record of the consecutive number of iterations in which the solution
does not move (improved). If value of this counter exceeds a predefined fixed
limit, then it is regenerated in the search space. The algorithm keeps record of
the best solution find so far and after end of the maximum limit of the iterations,
the best solution is produced as output. In basic ABC algorithm, only one search
strategy was used by the employee bees and the onlooker bees. In this study, a
set of search strategies (updating rules) is suggested and a bee chooses a strategy
(updating rule) from this set according to the performance of the strategy. The
ABC algorithm with the proposed rules is named as Multi-choice Artificial Bee
Colony (MCABC) Algorithm and is briefly discussed below.

Let S = {X1,X2, ...,Xn} be the initial swarm consist of n solutions randomly
generated in the search space of the optimization problem under consideration
and the problem consists of m variables. Then the i-th solution Xi consists of m
components and is represented by Xi = (xi1, xi2, ..., xim). Best solution found so
far is denoted by XB = (xB1, xB2, ..., xBm). For the movement of a solution, Xi,
perturbation is made on a randomly selected component of the solution. Let j-th
component xij of Xi is selected randomly for perturbation. Then Xi perturbed to
X

′

i = (xi1, xi2, ..., x
′

ij, ..., xim) and perturbation is made by selecting a rule from the
following set of rules according to the performance of the rule. In the rules, r1,
r2 are two randomly generated numbers in (−1,1) and k, l are randomly selected
from the set {1,2, ..., n}.

x
′

ij = xij+ r1(xBj − xij) (2.42)

x
′

ij = xij+ r1(xkj − xij) (2.43)

x
′

ij = xij+ r1(xBj − xij) + r2(xkj − xij) (2.44)

x
′

ij = xij+ r1(xBj − xij) + r2(xkj − xlj) (2.45)

Each rule is associated with a counter which is initialized with 1. If p-th rule is
selected for perturbation of Xi and perturbed solution X ′

i is better than Xi, then
Xi is replaced byX ′

i and the counter variable corresponding to p-th rule is increased
by 1. Selection of a rule is made by Roulette Wheel selection process [93, 123]
depending upon the value of its counter variable. This change is incorporated in

66 CHAPTER 2. SOLUTION METHODOLOGIES

Table 2.7: Benchmark functions used for comparison

No. of Name Search Function
Function Range

F1 Sphere [-100,100] f1(
Ð→
X) = ∑

n
i=1 x

2
i

F2 Elliptic [-100,100] f2(
Ð→
X) = ∑

n
i=1(106)(i−1)/(n−1)x2

i

F3 SumSquares [-10,10] f3(
Ð→
X) = ∑

n
i=1 ix

2
i

F4 Schwefel 2.22 [-10,10] f4(
Ð→
X) = ∑

n
i=1 ∣xi∣ +∏

n
i=1 ∣xi∣

F5 Quartic [-1.28,1.28] f5(
Ð→
X) = ∑

n
i=1 ix

4
i

F6 Rastrigin [-5.12,5.12] f6(
Ð→
X) = ∑

n
i=1[x

2
i − 10cos(2πxi) + 10]

F7 Weierstrass [-0.5,0.5] f7(
Ð→
X) = ∑

D
i=1(∑

kmax
k=0 [akcos(2πbk(xi + 0.5))]) −D∑

kmax
k=0 [akcos(2πbk0.5)];

a = 0.5, b = 3, kmax = 20

F8 Rosenbrock [-10,10] f8(
Ð→
X) = ∑

n−1
i=1 [100(xi+1 − x2

i)
2 + (xi − 1)2]

F9 Penalized 1 [-50,50] f9(
Ð→
X) = π

n{10sin2(πy1) +∑
n−1
i=1 (yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2}

+∑
n
i=1 u(xi,10,100,4); where, yi = 1 + 1

4(xi + 1) and

uxi,a,k,m =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

k(xi − a)m, xi > a
0,−a ≤ xi ≤ a
k(−xi − a)m, xi < −a

F10 Penalized 2 [-50,50] f10(
Ð→
X) = 1

10{sin
2(πx1) +∑

n−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)]

+(xn − 1)2[1 + sin2(2πxn)]} +∑
n
i=1 u(xi,5,100,4)

F11 Levy [-10,10] f11(
Ð→
X) = ∑

n−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)] + sin2(3πx1)

+∣xn − 1∣[1 + sin2(3πxn)]

F12 Himmelblau [-5,5] f12(
Ð→
X) = 1

n ∑
n
i=1(x

4
i − 16x2

i + 5xi)

basic ABC to create MCABC and is used to find marketing decisions of the some
models of the thesis.

Implementation and Testing: With the above function and values the algo-
rithm is implemented using Dev C++ (version 5.11) programming language in a
computer with core i3 CPU, 2 GB RAM, 2.53 GHz processor speed and Windows-7
operating system.

To test the performance of the proposed MCABC algorithm, it is tested against
a set of benchmark test problems available in the literature and are listed in Table
2.7. For each test function, the number of variables is considered as 30, i.e., n = 30.
The parametric values of the algorithm used for the purpose are taken as: number
of employee bees (eb)= 40, number of onlooker bees (ob)= 40 and upper limit of the
counter of a solution is n∗eb = 1200, i.e., if a solution is not moved by the employee
bee or by any onlooker bee in 1200 attempts, then the scout bee will regenerate
it and its counter is set to 0. The maximum number of iterations used to find the
optimal solution is taken as 6000. For each of the test problem, the algorithm is run
10 times with different seeds of random number generator and corresponding mean
and standard deviation of the obtained objective values are presented in Table
2.8. Performance of the algorithm is compared with a recently published ABC
variant, ABCVSS [96]. In the Table 2.8, results of ABCVSS [96] are taken from the
corresponding paper. From the Table 2.8, it is clear that performance of MCABC

2.2. SOLUTION METHODS/TECHNIQUES IN CRISP ENVIRONMENT 67

Table 2.8: Comparison of results of test functions for n = 30

ABCVSS Proposed Algorithm
Function

Mean Standard Deviation Mean Standard Deviation

F1 1.53E-81 8.37E-81 0 0

F2 4.82E-82 2.63E-81 0 0

F3 3.19E-89 1.48E-88 0 0

F4 7.89E-43 4.32E-42 0 0

F5 3.25E-154 1.78E-153 0 0

F6 0 0 0 0

F7 0 0 0 0

F8 3.87E-01 1.54E+00 9.21E-03 7.49E-03

F9 1.57E-32 5.57E-48 1.57E-32 2.74E-48

F10 1.35E-32 5.57E-48 1.50E-33 1.71E-49

F11 1.35E-31 6.68E-47 1.35E-31 0

F12 -7.83E+01 3.02E-10 -7.83E+01 1.42E-14

Table 2.9: Results of some test functions for different number of iterations

max iteration = 1000 max iteration = 2000 max iteration = 3000 max iteration = 4000

Function
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

F1 2.91E-13 3.81E-13 8.09E-30 2.34E-29 2.66E-46 7.96E-46 3.22E-62 9.65E-62

F2 6.36E-12 7.14E-12 6.34E-30 5.07E-30 1.39E-47 1.22E-47 1.70E-65 3.98E-65

F3 1.42E-14 1.34E-14 1.97E-31 5.15E-31 2.86E-49 7.38E-49 2.74E-67 5.10E-67

F4 1.24E-07 3.78E-08 1.08E-16 1.01E-16 1.13E-25 1.54E-25 8.00E-35 1.64E-34

F5 3.68E-32 6.00E-32 4.61E-65 1.19E-64 4.88E-98 1.20E-97 2.56E-129 7.48E-129

F6 3.40E-01 4.44E-01 3.35E-16 1.00E-15 0 0 0 0

F7 2.72E-04 1.19E-04 0 0 0 0 0 0

is better than ABCVSS. Again according to Kiran et al. [96], performance of
ABCVSS is better than the existing other ABC variants. From Table 2.8, it is
clear that MCABC produces exact optimal solution for any test problem in most
of the runs of the algorithm (mean values of the objectives are 0 or nearly 0 for all
the test problems). So the performance of MCABC is acceptable for continuous
optimization problems. Also a study is made to check the convergence of the global
best solution to the optimal solution for different test problems with respect to
the number of iterations and the results are presented in Table 2.9. It is clear
from the Table 2.9 that for each of the considered test problems the corresponding
global best solution gradually converges to the corresponding optimal solution as
iteration increases.

MCABC for Imprecise Environment: MCABC is capable of solving any
continuous optimization problem in crisp environment. It can be used to solve

68 CHAPTER 2. SOLUTION METHODOLOGIES

optimization problem in any imprecise environment also. To find the optimal
decision, this algorithm needs only comparison of objectives due to two solutions
X1 and X2. For interval valued objectives it can be done by fuzzy preference
ordering of intervals [99, 170]. For fuzzy objectives it can be done by credibility
measure approach [150]. For rough objectives it can be done by trust measure
approach [150].

• Let F̃1 and F̃2 be two fuzzy objectives due to two potential solutions X1

and X2 of the fuzzy optimization problem (having fuzzy objective function
F̃ and crisp decision vector X) under consideration. Then for maximisation
problem F̃1 is better than F̃2 if Cr(F̃1 > F̃2) > 0.5, where Cr(F̃1 > F̃2)

represents the credibility measure of the fuzzy event F̃1 > F̃2. It is a valid
fuzzy comparison as for any fuzzy event Ã > B̃, the following relation is
always holds [105, 150]

Cr(Ã > B̃) +Cr(Ã > B̃) = 1

where, (Ã > B̃) represents the complement of the event (Ã > B̃), i.e., the
event (Ã ≤ B̃).

• Let F̌1 and F̌2 be two rough objectives due to two potential solutions X1

and X2 of the rough optimization problem (having rough objective function
F̌ and crisp decision vector X) under consideration. Then for maximisation
problem F̌1 is better than F̌2 if Tr(F̌1 > F̌2) > 0.5, where Tr(F̌1 > F̌2)

represents the trust measure of the rough event F̌1 > F̌2. It is a valid rough
comparison as for any rough event Ǎ > B̌, the following relation is always
holds [105, 150]

Tr(Ǎ > B̌) + Tr(Ǎ > B̌) = 1

where, (Ǎ > B̌) represents the complement of the event (Ǎ > B̌), i.e., the
event (Ǎ ≤ B̌).

Constraint Handling: The algorithm can deal with constraint optimization. In
the presence of constraint, at the time of generation of a neighbour solution/new
solution, constraint checking is done by a separate sub-program. If the solution
satisfies the constraint of the problem, then it is included in the solution set,
otherwise it is rejected.

2.2. SOLUTION METHODS/TECHNIQUES IN CRISP ENVIRONMENT 69

2.2.2.4 Mixed-mode Multi-choice Artificial Bee Colony (MMCABC)

Algorithm

During last three decades different heuristic techniques play major role in the
real life decision making problems in different directions of science and technology.
Among different heuristics of continuous optimization, ABC draws more attention
during the last decade due to its performance and consistency. Karaboga [90]
introduced ABC algorithm by simulating the different phases involved in the search
process of foods of the honey bees. It is capable of producing optimal results with
any desired degree of accuracy in a reasonable computation time. After his novel
work, its different variants are produced by several researchers during the last
decade which are successful in the respective fields [18, 91, 132, 177]. Though
ABC is successful in continuous optimization, none of its variants are applicable
for mixed mode optimization where some of the variables are continuous and others
are integer type. Since the optimization problems arise in some studies involving
continuous as well as integer variables, here ABC is modified to deal with mixed
mode optimization problems. Basic ABC algorithm starts with a set of randomly
generated potential solutions in the search space of the optimization problem under
consideration. A solution is treated as a food source and the optimal solution is the
best food source. It is an iterative search approach, where each iteration consists of
three phases – employee bee phase, onlooker bee phase and scout bee phase. Each
food source (potential solution) is associated with an employee bee, i.e., number of
solutions equal to the number of employee bees. Each employee bee tries to find a
better food source, i.e., tries to find a better neighbour solution using some search
strategies. After operations of all the employee bees, i.e., after employee bee phase,
onlooker bee phase starts. Number of onlooker bees is fixed and each bee chooses
a solution (food source) from the solution set according to their fitness and tries
to find a better neighbour solution using some search strategies. After operation
of each onlooker bee, scout bee phase starts. Each solution is associated with a
counter which keeps record of the consecutive number of iterations in which the
solution does not move (improved). If value of this counter exceeds a predefined
fixed limit, then it is regenerated in the search space. The algorithm keeps record
of the best found solution so far and after the end of the maximum limit of the
iterations, the best solution is produced as output. In basic ABC algorithm, only
one search strategy was used by the employee bees and the onlooker bees. Kiran
et al. [96] proposed a variant of ABC named ABCVSS where multiple solution

70 CHAPTER 2. SOLUTION METHODOLOGIES

update rules are proposed for continuous optimization. Similar to ABCVSS, in
this study a set of search strategies (update rules) is suggested and a bee chooses a
strategy (update rule) from this set according to the performance of the strategy.
Rules are made in such a manner that these are capable of searching neighbour
solutions of a solution by perturbing continuous as well as integer variables. The
ABC algorithm with the proposed rules is named as Mixed-mode Multi-choice
Artificial Bee Colony (MMCABC) Algorithm and is briefly discussed below.

Let S = {X1,X2, ...,Xn} be the initial swarm consists of n solutions randomly
generated in the search space of the optimization problem under consideration
and the problem consists of m variables. Among these m variables, m1 are con-
tinuous variables and m2 are integer variables, i.e., m = m1 +m2. Without loss
of generality let first m1 variables are continuous and remaining are integer vari-
ables. Then the i-th solution Xi consists of m components and is represented by
Xi = (xi1, xi2, ..., xim1 , xi(m1+1), xi(m1+2), ..., xim). Best solution found so far is de-
noted by XB = (xB1, xB2, ..., xBm1 , xB(m1+1), xB(m1+2), ..., xBm). For the movement
of a solution, Xi, perturbation is made on a randomly selected component of the
solution. Let j-th component xij of Xi is selected randomly for perturbation.
Then Xi perturbed to X ′

i = (xi1, xi2, ..., x
′

ij, ..., xim) and perturbation is made by
selecting a rule from the following two sets of rules according to the performance
of the rules. First set of rules is applicable for the continuous variables and the
second set of rules is applicable for the integer variables.

Rule Set-1: A rule in this set is randomly selected for the perturbation of a
continuous variable xij of a potential solution Xi. In the rules, r1, r2 are uniformly
distributed over (−1,1) and k, l are randomly selected from the set {1,2, ..., n}.

x
′

ij = xij+ r1(xBj − xij) (2.46)

x
′

ij = xij+ r1(xkj − xij) (2.47)

x
′

ij = xij+ r1(xBj − xij) + r2(xkj − xij) (2.48)

x
′

ij = xij+ r1(xBj − xij) + r2(xkj − xlj) (2.49)

Rule Set-2: A rule in this set is randomly selected for the perturbation of an
integer variable xij of a potential solution Xi. In the rules, r1, r2 are two randomly
generated integers in the interval specified in the respective rule and k, l are

2.2. SOLUTION METHODS/TECHNIQUES IN CRISP ENVIRONMENT 71

randomly selected from the set {1,2, ..., n}.

x
′

ij = xij+ r1, where r1 ∈

⎧⎪⎪
⎨
⎪⎪⎩

[0, xBj − xij], if xBj − xij ≥ 0

[xBj − xij,0], if xBj − xij ≤ 0
(2.50)

x
′

ij = xij+ r2, where r2 ∈

⎧⎪⎪
⎨
⎪⎪⎩

[0, xkj − xij], if xkj − xij ≥ 0

[xkj − xij,0], if xkj − xij ≤ 0
(2.51)

x
′

ij = xij+ r1 + r2 (2.52)

x
′

ij = xij+ r1 + r3, where r3 ∈

⎧⎪⎪
⎨
⎪⎪⎩

[0, xkj − xlj], if xkj − xlj ≥ 0

[xkj − xlj,0], if xkj − xlj ≤ 0
(2.53)

Each rule is associated with a counter which is initialized with 1. If p-th rule is
selected for the perturbation of Xi and the perturbed solution X ′

i is better than
Xi, then Xi is replaced by X

′

i and the counter variable corresponding to p-th
rule is increased by 1. Selection of a rule is made by Roulette Wheel selection
process [93, 123] depending upon the value of its counter variable. This change is
incorporated in the basic ABC to create MMCABC and is used to find marketing
decisions for some models in this thesis.

Implementation and Testing: With the above function and values the algo-
rithm is implemented using Dev C++ (version 5.11) programming language in a
computer with core i3 CPU, 2 GB RAM, 2.53 GHz processor speed and Windows-7
operating system.

To test the performance of the proposed MMCABC algorithm, it is first tested
against a set of benchmark test problems having continuous variables only that
are available in the literature and are listed in Table 2.10. These test functions are
also modified by adding some functions of integer variables and the list of modified
functions (MF) are given in Table 2.12. In this table (Table 2.12), the variables
xi (i = 1,2, ..., n1) are continuous variables and the variables yi (i = 1,2, ..., n2)
are integer variables; where n1 and n2 are the number of variables of continuous
variables and integer variables respectively. For each of the modified function, the
number of variables are considered as n1 = 30 and n2 = 10.

The parametric values of the algorithm used for the purpose are taken as:
number of employee bees = 40, number of onlooker bees = 40 and upper limit of the
counter of a solution is 1600, i.e., if a solution is not moved by any bee (employee
or onlooker) in 1600 attempts, then a scout bee will regenerate it and its counter is
set to 0. The maximum number of iterations used to find optimal solution is taken

72 CHAPTER 2. SOLUTION METHODOLOGIES

Table 2.10: Benchmark continuous test functions used for the testing of MM-
CABC

No. of Name Search Function

Function Range

F1 Sphere [-100,100] f1(
Ð→
X) = ∑

n
i=1 x

2
i

F2 Elliptic [-100,100] f2(
Ð→
X) = ∑

n
i=1(106)(i−1)/(n−1)x2i

F3 SumSquares [-10,10] f3(
Ð→
X) = ∑

n
i=1 ix

2
i

F4 Schwefel 2.22 [-10,10] f4(
Ð→
X) = ∑

n
i=1 ∣xi∣ +∏

n
i=1 ∣xi∣

F5 Quartic [-1.28,1.28] f5(
Ð→
X) = ∑

n
i=1 ix

4
i

Table 2.11: Results of continuous test functions (for n = 30) using MMCABC

Different Mean & S.D. of the Mean & S.D. of the objectives obtained by
continuous Optimal objectives obtained MMCABC using different upper limits of iterations

test Objective by ABCVSS[96] Max iteration = 3000 Max iteration = 4000 Max iteration = 5000 Max iteration = 6000
Functions Value Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

F1 0 1.53E-81 8.37E-81 2.42E-49 4.89E-49 1.78E-67 2.64E-67 1.23E-85 2.07E-85 0 0
F2 0 4.82E-82 2.63E-81 2.12E-48 3.40E-48 1.95E-66 3.62E-66 3.27E-84 7.05E-84 0 0
F3 0 3.19E-89 1.48E-88 1.19E-49 3.38E-49 2.91E-67 8.67E-67 5.66E-86 1.68E-85 0 0
F4 0 7.89E-43 4.32E-42 1.28E-24 2.93E-24 2.35E-33 6.80E-33 7.13E-42 2.12E-41 0 0
F5 0 3.25E-154 1.78E-153 1.89E-100 5.60E-100 5.92E-136 1.40E-135 4.38E-170 0 0 0

as 8000. For each of the test problem of Table 2.10, the algorithm is run 10 times
with different seeds of random number generator using different iteration limits and
corresponding mean and standard deviation of the obtained objective values are
presented in Table 2.11. From Table 2.11 it is found that the algorithm produces
exact optimal solutions of all the considered test problems of Table 2.10 in all the
runs of the algorithm if the number of iterations exceeds 6000. Performance of the
algorithm is compared with a recently published ABC variant, ABCVSS [96]. In
Table 2.11, the results of ABCVSS [96] are taken from the corresponding paper.
From Table 2.11, it is clear that the performance of MMCABC is comparable to
ABCVSS for continuous optimization problems. Again, according to Kiran et al.
[96], performance of ABCVSS is better than the existing other ABC variants. From
Table 2.11, it is clear that MMCABC produces better optimal solution for the test
problems in most of the runs of the algorithm. So the performance of MMCABC
is acceptable for continuous optimization problems. Similar to the continuous
test problems, the algorithm is also tested against mixed-integer optimization test
problems listed in Table 2.12. For each of the test problems of Table 2.12, the
algorithm is run 10 times with different seeds of random number generator using
different iteration limits and corresponding mean and standard deviation of the
obtained objective values are presented in Table 2.13. From Table 2.13, it is also
clear that the proposed algorithm is capable of producing results of any mixed-
integer programming problem with any desired degree of accuracy.

2.3. SOLUTION METHODS/TECHNIQUES IN FUZZY ENVIRONMENT 73

Table 2.12: Mixed integer test functions used for the testing of MMCABC

No. of Search Function

Function Range

MF1 xi ∈ [−100,100], yi ∈ [0,10] f1(
Ð→
X) + f1(

Ð→
Y) = ∑

n1
i=1 x

2
i +∑

n2
i=1(yi − i)

2

MF2 xi ∈ [−100,100], yi ∈ [0,10] f2(
Ð→
X) + f2(

Ð→
Y) = ∑

n1
i=1(106)(i−1)/(n1−1)x2i +∑

n2
i=1(yi − i)

2

MF3 xi ∈ [−10,10], yi ∈ [0,10] f3(
Ð→
X) + f3(

Ð→
Y) = ∑

n1
i=1 ix

2
i +∑

n2
i=1(yi − i)

2

MF4 xi ∈ [−10,10], yi ∈ [0,10] f4(
Ð→
X) + f4(

Ð→
Y) = ∑

n1
i=1 ∣xi∣ +∏

n
i=1 ∣xi∣ +∑

n2
i=1(yi − i)

2

MF5 xi ∈ [−1.28,1.28], yi ∈ [0,10] f5(
Ð→
X) + f5(

Ð→
Y) = ∑

n1
i=1 ix

4
i +∑

n2
i=1(yi − i)

2

Table 2.13: Results of mixed integer test functions (for n1 = 30 and n2 = 10)
using MMCABC

Test Optimal Max iteration = 6000 Max iteration = 7000 Max iteration = 8000
Function objective Mean of S.D. of Best Mean of S.D. of Best Mean of S.D. of Best

value objectives objectives objective objectives objectives objective objectives objectives objective
MF1 0 4.31E-69 9.05E-69 5.19E-80 1.31E-80 2.61E-80 0 0 0 0
MF2 0 9.23E-69 2.77E-68 1.99E-79 2.60E-81 7.79E-81 0 0 0 0
MF3 0 1.14E-71 3.43E-71 4.35E-80 3.00E-84 9.01E-84 0 0 0 0
MF4 0 5.18E-38 1.13E-37 1.14E-40 5.89E-45 1.39E-44 0 0 0 0
MF5 0 3.82E-130 1.15E-129 1.05E-160 4.09E-149 1.23E-148 0 2.63E-171 0 0

MMCABC for Imprecise Environment: In imprecise environment, the solu-
tion procedure is same as the MCABC in previous article (cf. § 2.2.2.3).

Constraint Handling: Some models of the thesis consists of constraint opti-
mization. In the presence of constraint, at the time of generation of a neighbour
solution/new solution, constraint checking is done by a separate sub-program. If
the generated/perturbed solution satisfies the constraints of the problem, then it
is included in the solution set, otherwise it is rejected/regenerated. Some prob-
lems on mixed integer programming with constraint [40] are presented in Table
2.14. The problems are solved using the proposed approach and the results are
presented in Table 2.14. From Table 2.14 it is clear that the algorithm is capable
of solving mixed-integer constrained optimization problems.

2.3 Solution Methods/Techniques in Fuzzy Envi-

ronment

In the most of the programming model, the DM is not able to define the different
parameters precisely of the optimization problem under consideration. In these
cases, the parameters are either defined in non-stochastic sense, i.e., as fuzzy
numbers with feasible membership functions, or in stochastic sense, i.e., as random
numbers with feasible probability distributions. In case of non-stochastic sense,

74 CHAPTER 2. SOLUTION METHODOLOGIES

Table 2.14: Some problems for constraint handling

No. of Problem Exact Obtained
Problem Solution Solution
PR1 Min f(x, y) = 2x + y

subject to: 1.25 − x2 − y ≤ 0, (x, y; f) = (0.5,1; 2) (x, y; f) = (0.5,1; 2)
x + y ≤ 1.6,

0 ≤ x ≤ 1.6, y ∈ {0,1}
PR2 Min f(x, y) = −y + 2x − ln(x/2)

subject to: −x − ln(x/2) + y ≤ 0, (x, y; f) = (1.375,1; 2.124) (x, y; f) = (1.375,1; 2.124)
0.5 ≤ x ≤ 1.5, y ∈ {0,1}

PR3 Min f(x) = x2
1 + x1x2 + 2x2

2 − 6x1 − 2x2 − 12x3

subject to: 2x2
1 + x

2
2 ≤ 15, (x1, x2, x3; f) (x1, x2, x3; f)

−x1 + 2x2 + x3 ≤ 3, = (2,0,5;−68) = (2,0,5;−68)
0 ≤ x1, x2, x3 ≤ 10, integer variables

PR4 Min f(x, y) = (y1 − 1)2 + (y2 − 1)2 + (y3 − 1)2

−ln(y4 + 1) + (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

subject to: y1 + y2 + y3 + x1 + x2 + x3 ≤ 5.0, (x1, x2, x3, y1, y2, y3, y4; f) (x1, x2, x3, y1, y2, y3, y4; f)
y2

3 + x
2
1 + x

2
2 + x

2
3 ≤ 5.5, = (0.2,1.280624,1.954483, = (0.2,1.276953,1.956861,

y1 + x1 ≤ 1.2, y2 + x2 ≤ 1.8, 1,0,0,1; 3.557463) 1,0,0,1; 3.557787)
y3 + x3 ≤ 2.5, y4 + x1 ≤ 1.2,

y2
2 + x

2
2 ≤ 1.64, y2

3 + x
2
3 ≤ 4.25, y2

2 + x
2
3 ≤ 4.64,

x1, x2, x3 ≥ 0, y1, y2, y3, y4 ∈ {0,1}

the problem belongs to the class of SOOP in fuzzy environment. A crisp SOOP
may be defined as follows:

Max f(x, a, b)

subject to gr(x, a) ≤ cr, r = 1,2, ...,m

xk ≥ 0, k = 1,2, ..., n

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(2.54)

where, x = (x1, x2, ..., xn)T is crisp decision vector, a = (a1, a2, ..., ap)T and b =

(b1, b2, ..., bq)T are crisp parameter vectors, c = (c1, c2, ..., cm)T is crisp resource
vector. There are two types of optimization problems in fuzzy environment.

2.3.1 Type-I: Imprecise (fuzzy) Parameters in Objective Func-

tion

If the parameter vector b of the SOOP (Eqn. (2.54)) is fuzzy in nature (i.e., b̃),
then the SOOP reduces to a fuzzy single objective optimization problem (FSOOP)
as

Max f̃(x, a, b̃)

subject to gr(x, a) ≤ cr, r = 1,2, ...,m

xk ≥ 0, k = 1,2, ..., n

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(2.55)

2.3. SOLUTION METHODS/TECHNIQUES IN FUZZY ENVIRONMENT 75

where, x = (x1, x2, ..., xn)T is crisp decision vector, a = (a1, a2, ..., ap)T is crisp
parameter vector, b̃ = (b̃1, b̃2, ..., b̃q)T is fuzzy parameter vector, c = (c1, c2, ..., cm)T

is crisp resource vector.

Solution Procedure 1: Easiest way to deal with the problem (Eqn. (2.55))
is to replace the fuzzy parameters with equivalent crisp parameter, e.g., expected
values of fuzzy parameters, GMIV of fuzzy parameters etc. Then the problem
reduces to a SOOP and the reduced SOOP can be solved by any suitable solution
method. In this thesis, expected values of fuzzy objectives are used in Model 4.1
and GMIV of the fuzzy objectives is used in Model 4.2.

Solution Procedure 2: Another way to deal with the problem (Eqn. (2.55)) is
the use of any soft computing technique like PSO, MCABC, MMCABC etc. These
algorithms are efficient to find the solution of any crisp optimization problems. But
in case of fuzzy optimization problems, there is require fuzzy comparison, i.e., the
comparison between two fuzzy objectives. To overcome this situation, the credibil-
ity measure (cf. § 2.1.2.5) of fuzzy event can be used, which are discussed earlier.
In this way one can optimize a fuzzy optimization problem without transferring
the problem into its crisp equivalent. In this thesis, some fuzzy models (Models
3.1, 3.2, 4.1, 4.2, 4.3) are optimized using this approach.

2.3.2 Type-II: Imprecise (fuzzy) Parameters in both the Ob-

jective Function and Constraint

In the above FSOOP (Eqn. (2.55)), if the parameter vector a and the resource
vector c are also fuzzy in nature (i.e., ã and c̃), then FSOOP reduces to a fuzzy
constraint single objective optimization problem (FCSOOP) as

Max f̃(x, ã, b̃)

subject to g̃r(x, ã) ≤ c̃r, r = 1,2, ...,m

xk ≥ 0, k = 1,2, ..., n

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(2.56)

where, x = (x1, x2, ..., xn)T is crisp decision vector, ã = (ã1, ã2, ..., ãp)T and b̃ =

(b̃1, b̃2, ..., b̃q)T are fuzzy parameter vectors, c̃ = (c̃1, c̃2, ..., c̃m)T is fuzzy resource
vector.

76 CHAPTER 2. SOLUTION METHODOLOGIES

In real life problem, it is often observed that the α-cut [fL(x, a, b, α), fR(x, a, b, α)]
of the fuzzy objective f̃(x, ã, b̃) is available rather its explicit form:

Max [fL(x, a, b, α), fR(x, a, b, α)]

subject to g̃r(x, ã) ≤ c̃r, r = 1,2, ...,m

xk ≥ 0, k = 1,2, ..., n

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(2.57)

PSO, MCABC, MMCABC can be used to solve the problems (Eqn. (2.56)),
where the objective function can be dealt with the similar way of solution proce-
dure 2 of type-1. To deal with the fuzzy constraint g̃r(x, ã) ≤ c̃r, the credibility
measure approach can be used. Using this approach, the value x0 of the decision
vector x is feasible if and only if Cr(g̃r(x0, ã) ≤ c̃r) > 0.5 (cf. Lemma 2.4).

The same techniques can be used to solve the problems (Eqn. (2.57)), where
the constraints can be dealt with the same approach as stated above. As no well
established comparison approach for α-cut of fuzzy objectives is available in the
literature, fuzzy preference ordering (cf. § 2.1.5) of interval comparison is used to
find the marketing decisions. In this thesis, this approach is followed to solve the
fuzzy inventory model (Model 3.3).

2.4 Solution Methods/Techniques in Rough Envi-

ronment

2.4.1 Type-I: Imprecise (rough) Parameters in Objective

Function

If the parameter vector b of the SOOP (Eqn. (2.54)) is rough in nature (i.e., b̌),
then the SOOP reduces to a rough single objective optimization problem (RSOOP)
as

Max f̌(x, a, b̌)

subject to gr(x, a) ≤ cr, r = 1,2, ...,m

xk ≥ 0, k = 1,2, ..., n

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(2.58)

2.4. SOLUTION METHODS/TECHNIQUES IN ROUGH ENVIRONMENT 77

where, x = (x1, x2, ..., xn)T is crisp decision vector, a = (a1, a2, ..., ap)T is crisp
parameter vector, b̌ = (b̌1, b̌2, ..., b̌q)T is rough parameter vector, c = (c1, c2, ..., cm)T

is crisp resource vector.

Solution Procedure 1: Easiest way to deal with the problem (Eqn. (2.58))
is to replace the rough parameters with equivalent crisp parameter, e.g., expected
values of rough parameters. Then the problem reduces to a SOOP and the reduced
SOOP can be solved by any suitable solution method. In this thesis, expected
values of rough objectives are used in Model 4.1.

Solution Procedure 2: Another way to deal with the problem (Eqn. (2.58)) is
the use of any soft computing technique like PSO, MCABC, MMCABC etc. These
algorithms are efficient to find the solution of any crisp optimization problems. But
in case of rough optimization problems, there is require rough comparison, i.e., the
comparison between two rough objectives. To overcome this situation, the trust
measure (cf. § 2.1.3) of rough event can be used, which are discussed earlier. In
this way one can optimize a rough optimization problem without transferring the
problem into its crisp equivalent. In this thesis, some rough models (Models 3.1,
4.3) are optimized using this approach.

2.4.2 Type-II: Imprecise (rough) Parameters in both the

Objective Function and Constraint

In the above RSOOP (Eqn. (2.58)), if the parameter vector a and the resource
vector c are also rough in nature (i.e., ǎ and č), then RSOOP reduces to a rough
constraint single objective optimization problem (RCSOOP) as

Max f̌(x, ǎ, b̌)

subject to ǧr(x, ǎ) ≤ čr, r = 1,2, ...,m

xk ≥ 0, k = 1,2, ..., n

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(2.59)

where, x = (x1, x2, ..., xn)T is crisp decision vector, ǎ = (ǎ1, ǎ2, ..., ǎp)T and b̌ =

(b̌1, b̌2, ..., b̌q)T are rough parameter vectors, č = (č1, č2, ..., čm)T is rough resource
vector.

PSO, MCABC, MMCABC can be used to solve the problems (Eqn. (2.59)),
where the objective function can be dealt with the similar way of solution proce-
dure 2 of type-1. To deal with the rough constraint ǧr(x, ǎ) ≤ čr, the trust measure

78 CHAPTER 2. SOLUTION METHODOLOGIES

approach can be used. Using this approach, the value x0 of the decision vector x
is feasible if and only if Tr(ǧr(x0, ǎ) ≤ čr) > 0.5 (cf. Lemma 2.8).

