
Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

155

6.1. Overview

Sharing of the private key between sender and receiver without interpretation through

open public communication channels is very hard to achieve. So the focus has been

imposed to design a secret procedure which retrieves a secret value from the private key

and applying that value for encryption rather than using the direct private key value. On

that view, some schemes are newly implemented and have been discussed in chapter 5

where a single private key is applied for encrypting all the characters of a plain text file.

So in this current chapter, some text encryption schemes based on operators, even odd

terms and numbers of ‘0’,’1’ present in binary representation of plain text’s character are

implemented where a separate private key is applied for encrypting each character of the

plain text file.

Three text based encryption schemes are discussed in this chapter. They are Multiple

Operator and Even Odd position based text encryption (MOEO)1, Multiple Operator and

ASCII Value based text encryption (MOAV)2 and Multiple Operator and number of

Zeros and Ones based text encryption (MOZO)3. Appreciable performances are measured

in respect of encryption time, chi-square value and degree of freedom value.

In this chapter, Multiple Operator and Even Odd position based text encryption (MOEO)

in section 6.2, Multiple Operator and ASCII Value based text encryption (MOAV) in

section 6.3, Multiple Operator and number of Zeros and Ones based text encryption

Chapter 6

Text Encryption Building Blocks using

Operators and Position of Bits in Plain Text

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

156

(MOZO) in section 6.4 have been discussed. Conclusion regarding all the implemented

schemes is attached in section 6.5.

6.2. Multiple Operator and Even Odd position based text encryption scheme

(MOEO)

In MOEO1 scheme, both encryption and decryption are carried out by using the derived

secret value from primary key rather than using the private key directly. Generation of

secret value is done by performing user defined arithmetic operation between three

decimal values where those decimal values are generated from the binary values stored in

even and the odd bit position of a plain text’s character respectively and Nth prime value

(Where N is a positive integer with a range of 0 to 262-1). The operators are fetched

from the corresponding blocks of private key and operators are inputted by the user.

Different secret value is generated for encryption of each of the plain text’s character as

the formations of ‘0’ and ‘1’ are different for each distinct character in the plain text file.

Thus provide great security .Figure 6.1 represents the overall procedure of Multiple

Operator and Even Odd position based text encryption scheme(MOEO).

1 Published in International Journal of Engineering and Advanced Technology (IJEAT), Volume 2,

Issue 4, pp. 520-524,with title An approach of Private-key Encryption Technique based on Multiple

Operators and Nth Even or Odd term for Even or Odd bit position’s value of a Plain Text’s character

Two Decimal values, decimal value for even bit position (d (ev)) and decimal value for

odd bit position (d (ov)) are generated by taking binary values of the even bit position

and odd bit position of plain text’s character respectively and Nth prime value is

generated with a forward movement from user inputted base value (where N is a

positive integer with a range of 0 to 262-1)

Formation of plain text is done by converting each character into an 8-bit binary

representation. Generate private key by taking inputs from the user.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

157

Figure 6.1: Overall Procedure of Multiple Operator and Even Odd position based text

encryption scheme(MOEO)

Section 6.2.1 and section 6.2.2 represents the encryption and decryption process

respectively. Execution results are shown in section 6.2.3 and security analysis of the

scheme are discussed in section 6.2.4.

6.2.1. Encryption Process

A. Formation of Plain Text

Step 1: Convert each character into 8-bit binary representation from plain text file till all

characters are visited. Store the characters into an array called PT[].

The d(ev) and d(ov) value are represented as Nth odd or even value in range of 0 to

28-1 and that values are stored in n(ep) and n(op) respectively.

An operation is performed on n(ep) values and the result is stored in result1. The

operation (operator for even/operator for odd) is selected depending on nature

(even/odd) of the value n(ep). Similar activity is done for n(op) and the result is stored

in result2.

Secret value is derived by performing the operation between result1 and result2 and

Nth prime number. Perform XOR block wise between the bits of secret value and the

plain text‘s characters. Thus generate ciphertext. The reverse procedure is followed for

decryption.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

158

B. Generation of Private Key

Step 1: Read user inputs for first, second, seventh, eight and ninth block of the primary

key whereas values for third, fourth, fifth and six blocks of the key are computed from

each character’s value of the plain text.

Step 2: Convert the inputs into bits and computed values corresponding to their

respective blocks of the primary key and store the values into an array called KEY[].

There are nine blocks in the private key where its size is 256 bits. First and second blocks

hold the operators for even and odd values respectively where the value is generated from

the even or odd bit position’s binary value of a plain text’s character. The third block

holds the selection code which defines that the fourth block’s content is even or odd. The

fourth block represents a value in respect of Nth (N is a positive integer with a range of 0

to 28-1) even or odd term where the value is generated from the even position’s bit value

of plain text’s character. The fifth block holds the selection code which defines that the

sixth block’s content is even or odd. The sixth block represents a value which is

generated from the odd position’s bit value of plain text ’s character in respect of Nth (N

is a positive integer with a range of 0 to 28-1) even or odd term. The base operator is

stored in the seventh block. Eighth block stores the Nth (N is a positive integer with a

range of 0 to 262-1) term for a prime number where base value is stored in the ninth

block. Figure 6.2 represents the structure of the key.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

159

 1st block 2nd block 3rd block 4th block

Operator

applied for even

values o(ep)

Operator

applied for odd

values o(op)

Selection

code for

even or odd

Nth odd/even term for even

position’s bit value of plain

text’s single character. n(ep)

 8 bits 8 bits 2 bits 8 bits

 5th block 6th block 7th block 8th block 9th block

Selection

code for even

or odd

Nth odd/even term for odd

position’s bit value of plain

text’s single character. n(op)

Operator

applied for

base value

O(b)

Nth term

for prime

number

Base

value

 2 bits 8 bits 8 bits 62 bits 150 bits

Figure 6.2: Structure of 256 bits Private Key

C. Generation of Secret Value for Encryption

Step 1: Decimal value from even bit position d(ev) and decimal value from odd bit

position d(ov) are generated from the bit values present in even and the odd bit position

of a plain text character respectively. Represent d(ev) and d(ov) in respect of Nth (N is a

positive integer with a range of 0 to 28-1) even or odd term and store them in n(ep) and

n(op) respectively.

.

Step 2: An operation specified by the operator (operator for even/operator for odd) is

executed on n(ep) value depending upon nature (even/odd) of the value and the result is

stored in result1. Similar activity is done for n(op) and the result is stored in result2. The

Nth prime number is generated by making a forward movement from user defined base

value and stored in result3.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

160

Step 3: Base operator is executed between result1 and result2 and intermediate value is

generated. Again the base operator is performed between intermediate value and result3

and secret value is generated.

Step 4: Secret value is converted into binary representation and stored into array DV[].

D. Generation of Ciphertext using XOR Operation

Step 1: Cumulative XOR operation is carried out between the array PT[] and DV[] and

the resultant bits are stored in array EN[].

Step 2: ASCII value is generated from array EN[] and the corresponding encrypted

character is generated from that ASCII value. Thus generates ciphertext file.

6.2.2. Decryption Process

A. Generation of Binary Representation of Ciphertext

Convert each character from the ciphertext file into 8-bit binary representation and store

it into an array called CT[].

B. Generation of Secret Value for Decryption

Derive secret value for decryption by using section 6.2.1.C and store the bit values in an

array called DV[].

C. Formation of Decrypted Text using XOR Operation

Step 1: XOR operation is done between the array CT[] and array DV[] and resultant

values are stored in array DT[]. ASCII code is generated from the bit values of array

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

161

DT[]. Decrypted characters are generated from the ASCII value and stored in the

decrypted text file.

6.2.3. Implementations with Experimental Results

As the formation of ‘0’s and ‘1’s of a single character from a plain text file determines

the private key value, so different key is applied for each character of the plain text file.

Operators *, + and – are used for even value, odd value and base operator respectively.

Value 100 and 10000 is considered for Nth term for the prime number and base value

respectively. Encryption is done by the secret value derived from the private key and it

takes 10047 milliseconds using a computer with Core 2 Duo 2.20 GHz processor and

1.00 GB RAM. Table 6.1 represents encryption results.

Table 6.1: Content of Plain Text, Cipher Text and Decrypted Text File for MOEO

Scheme

Content of Plain Text
File

Content of Cipher
Text

Content of Decrypted Text
File

Rgthfdtghhjmnbvcxzasdf

ghjklpoiuytrewq1245667

890-;l;/.,'[[

phyzDLF¾?æ/?*Ö?Ï²?

$üÛÑÕÔïþÎÛÜý¥ßÄ?·

¿Ñã?³?ºíàóýùÞ?ë¸§á??

ÈëßÕ°

Rgthfdtghhjmnbvcxzasdfghjkl

poiuytrewq1245667890-

;l;/.,'[[

Table 6.2 represents the execution results of MOEO scheme for different types of files

using a computer with Core 2 Duo 2.20 GHz processor and 1.00 GB RAM.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

162

Table 6.2: Representation of Execution Results of MOEO Scheme on Different Types of

Files

Name of Plain
Text File

Plain
Text File

Size
(Byte)

Encrypted
File

Size(Byte)

Time needed for
Encryption

(Milliseconds)

Time needed
for Decryption
(Milliseconds)

loadfix.com 1131 1131 120031 120012

ReadMe.txt 286 286 37734 37717

WINSTUB.EXE 578 578 82968 82925

VIAPCI.SYS 2712 2712 83235 83213

iconlib.dll 2560 2560 74312 74295

README.COM 4217 4217 390141 390124

LICENSE.TXT 4829 4829 120360 120332

mqsvc.exe 4608 4608 113407 113389

rootmdm.sys 5888 5888 148156 148124

KBDAL.DLL 6656 6656 161329 161315

diskcomp.com 9216 9216 906187 906153

TechNote.txt 9232 9232 244281 244262

label.exe 9728 9728 209969 209947

sffp_mmc.sys 10240 10240 222594 222573

panmap.dll 10240 10240 266375 266359

Figure 6.3.graphically represents how encryption time change depends on file size. As

encryption is done on bit level so file type does not make any impact on encryption time.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

163

Figure 6.3: Representation of Relationship between File Size and Encryption Time

6.2.4. Security analysis of Multiple Operator and Even Odd position based text

encryption scheme (MOEO)

Table 6.3 represents chi-square and degree of freedom values of the implemented MOEO

scheme for different types of files where chi-square value and degree of freedom value

are calculated as per the equation 3.1 and 3.2 respectively mentioned in chapter 3.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

164

Table 6.3: Representation of Chi-Square and Degree of Freedom Values generated by

MOEO Scheme on Different Files

File Name
File size

(Byte)

Encryption

Time

(Milliseconds)

Multiple Operator and Even Odd
position based text encryption

scheme (MOEO)

Chi-Square Value
Degree of

Freedom

loadfix.com 1131 120031 8216.072266 228

README.COM 4217 390141 70892.250000 250

diskcomp.com 9216 906187 210041.203125 251

ReadMe.txt 286 37734 240.151215 153

LICENSE.TXT 4829 120360 6728.769043 223

TechNote.txt 9232 244281 12392.061523 223

WINSTUB.EXE 578 82968 620.333374 70

mqsvc.exe 4608 113407 2918791.750000 223

label.exe 9728 209969 2807712.000000 249

VIAPCI.SYS 2712 83235 2712.000000 190

rootmdm.sys 5888 148156 5888.000000 231

sffp_mmc.sys 10240 222594 1753322.625000 238

iconlib.dll 2560 74312 1959282.875000 144

KBDAL.DLL 6656 161329 368832.031250 241

panmap.dll 10240 266375 10600647.000000 248

Figure 6.4 and Figure 6.5 show the graphical representation of chi-square values and

degree of freedom values generated by MOEO scheme on different types of files

respectively.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

165

Figure 6.4: Representation of Chi-Square Values generated by MOEO Scheme on

Different Files

Figure 6.5: Representation of Degree of Freedom Values generated by MOEO Scheme

on Different Files

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

166

 MOEO scheme shows satisfactory performances in respect of the degree of freedom

value and chi-square value where security is enhanced by applying large key size.

6.3. Multiple Operator and ASCII Value based text encryption scheme (MOAV)

In MOAV2 scheme, the focus is imposed to design secret procedure which derives

separate secret value applied for encryption of each of the plain text’s character based on

the character’s ASCII value. Encryption is carried out using the secret value rather than

using the private key value directly. Generation of secret value is done by performing an

arithmetic operation between derived decimal value and Nth palindrome number (where

N is a positive integer). That decimal value is generated from the binary values of eight-

bit representation of a plain text’s character. The operators are user defined and are

fetched from the respective block of the primary key. Different secret value is generated

and applied for encryption of each of the plain text’s character as the ASCII code is

different for each distinct character of the plain text. Thus the security is enhanced.

Figure 6.6 represents the overall procedure for Multiple Operator and ASCII Value based

text encryption scheme (MOAV).

2 Published in International Journal of Engineering Research & Technology (IJERT), Volume 2, Issue

4, pp. 1433-1438,with title An Approach of Private Key Encryption Technique based on Multiple

Operators and Nth Even or Odd Term for ASCII Value of a Plain Text’s Character

A decimal value (d(v)) is the value which is generated by taking the binary value of

the 8-bit position of the plain text’s character.

Formation of plain text is done by converting each character into 8-bit binary

representation. Generate private key by taking inputs from the user.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

167

Figure 6.6: Overall Procedure for Multiple Operator and ASCII Value based text encryption

scheme (MOAV)

Section 6.3.1 and section 6.3.2 represents encryption and decryption process respectively.

Experimental results and security analysis of MOAV scheme are described in section

6.3.3 and 6.3.4 respectively.

6.3.1. Encryption Process

A. Formation of Plain Text

Step 1: Convert each character of the plain text file into 8-bit binary representation and

store the value into an array name PT[]. Carry out the same operations until all the

characters of the plain text file are visited.

Determine the Nth even or odd term (eo) in the range of 0 to 28-1 where Nth term is

calculated from the value of d(v). Generate Nth palindrome number by making a

forward movement from the base value.

Perform arithmetic operation between n(eo) and Nth palindrome number. 4th block’s

value in the private key determines how many times the operation is being

performed. The operation is selected from (operator for even/operator for odd) block

depending on nature (even/odd) of the value n(eo). Thus we get the secret derived

value.

Perform XOR block wise between the bits of secret value and the plain text‘s

characters. Thus generate ciphertext. The Reverse procedure is done for decryption.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

168

B. Generation of Private Key

Step 1: Read the inputs for the first, second, fourth, sixth and seventh block of the

primary key. Value of third and fifth block is calculated from each character of the plain

text file.

Step 2: Convert the input and derived values into bits corresponding to their respective

block of the primary key and store the values into an array named KEY[].

The primary key has seven numbers of blocks and its size is 256 bits. First and second

block hold the operators applied for the values derived from even or odd bit position’s

value of a plain text character respectively. Value of the third block defines that the fifth

block’s value is even or odd. Fourth block’s value determines how many times the

operator for even or odd is executed. The fifth block represents a value which is

generated from bit value of plain text’s character in respect of Nth (N is a positive integer

with a range of 0 to 28-1) even or odd term. The sixth block holds the Nth (N is a positive

integer with a range of 0 to 278-1) term for palindrome number. The seventh block holds

the base value. Figure 6.7 represents the key structure of the primary key.

1st block 2nd block 3rd block 4th block 5th block 6th block 7th block

Operator

applied

for even

value

o(ep)

Operator

applied

for odd

value

o(op)

Selection

code for

even or

odd

Number of

time o(op)

or o(ep) is

to be

executed

Nth even/odd

term for the bit

value of plain

text’s

character

n(eo)

Nth term

for

palindrome

number

Base

Value

 8 bits 8 bits 2 bits 2 bits 8 bits 78 bits 150 bits

Figure 6.7: Structure of 256 bits Private Key

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

169

C. Formation of Secret Value for Encryption

Step 1: Decimal value d(v) is generated from the bit values of a plain text’s character.

The value of d(v) is represented in respect of Nth even or odd term n(eo) in the range of 0

to 28-1. Nth palindrome number is calculated from the user mentioned base value with a

forward movement.

Step 2: Arithmetic operation is done between n(eo) and Nth palindrome number where the

value of the fourth block of primary key defines that the number of times operation is

done. The operation is defined by the operators (operator for even/operator for odd)

which is selected based on nature (even/odd) of the value n(eo). Thus secret value is

generated.

Step 3: Secret value is stored into array called DV[] in respect of binary representation.

D. Ciphertext Formation using XOR Operation

Step 1: XOR operation is done in between array PT[] and array DV[] and store the value

in an array named EN[].

Step 2: Generate encrypted character from the ASCII value where the ASCII value is

formatted from the value of the array EN[]. Encrypted characters are stored in the

ciphertext file.

6.3.2. Decryption Process

A. Conversion of Cipher Text

Each character of ciphertext file is converted into 8-bit binary representation and stored

into an array named CT[].

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

170

B. Formation of Secret Value for Decryption

Generate the secret value from the key using section 6.3.1.C. Convert the value into

binary representation and store the value into an array named DV[].

C. Decrypted Text Formation using XOR Operation

Step 1: XOR operation is done between the array CT[] and array DV[] and the result is

stored in array DT[].

Step 2: Final decrypted character is generated from the ASCII value. ASCII value is

generated from the value of DT[]. Decrypted characters are stored in the decrypted text

file.

6.3.3 Experimental Results and Discussions

As ASCII code value of each character from the plain text file and other inputted

operators determine private key value, so separate key is applied for encrypting each

character of the plain text file. Operators + and - are applied for even value and odd value

respectively. Value 100 and 10000 is considered for Nth term for palindrome number and

base value respectively. 2 is considered as the value of no. of time operation is

performed.

16328 milliseconds are needed for encryption using a computer with Core 2 Duo 2.20

GHz processor and 1.00 GB RAM and encryption is carried out by the secret value

derived from the private key. Table 6.4 represents encryption results.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

171

Table 6.4: Content of Cipher Text, Plain Text and Decrypted Text File for MOAV Scheme

Plain Text File’s Content
Cipher Text File’s

Content
Decrypted Text File’s

Content
1234567890qweryyASFGJK

LZCBN[];',//!@#$%^&*()_+

}{":<>?

;9?v=z3{}ossKYM-A>IQ

W1-%%+)/6-#U!wq

 -~zv5-

1234567890qweryyASFGJKL

ZCBN[];',//!@#$%^&*()_+}{"

:<>?

Table 6.5 shows the results of executions of MOAV scheme for different file types using

a computer with Core 2 Duo 2.20 GHz processor and 1.00 GB RAM.

Table 6.5: Representation of Encryptions Results of MOAV Scheme on Different Files

File Name
(Plain Text)

Size of
Plain

Text File
(Byte)

Size of
Encrypted
File(Byte)

Encryption
Time

(Milliseconds)

Decryption
Time

(Milliseconds)

loadfix.com 1131 1131 31703 31652

ReadMe.txt 286 286 204188 204127

WINSTUB.EXE 578 578 46125 46078

VIAPCI.SYS 2712 2712 128125 128075

iconlib.dll 2560 2560 164141 164111

README.COM 4217 4217 93312 93273

LICENSE.TXT 4829 4829 168640 168615

mqsvc.exe 4608 4608 75000 74972

rootmdm.sys 5888 5888 210265 210221

KBDAL.DLL 6656 6656 203125 203113

diskcomp.com 9216 9216 313484 313457

TechNote.txt 9232 9232 314844 314812

label.exe 9728 9728 326172 326136

sffp_mmc.sys 10240 10240 354766 354719

panmap.dll 10240 10240 413844 413811

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

172

Figure 6.8 graphically represents how file size makes an impact on encryption time.

Encryption time increases as the size of the file are increased.

Figure 6.8: Representation of Impact of File Size over Encryption Time

6.3.4. Security Analysis of Multiple Operator and ASCII Value based text

encryption scheme (MOAV)

Table 6.6 shows the degree of freedom and chi-square values of MOAV scheme on

different types of files where chi-square value and degree of freedom value are calculated

as per the equation 3.1 and 3.2 respectively mentioned in chapter 3.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

173

Table 6.6: Resultant Chi-Square and Degree of Freedom Values from MOAV Scheme

File Name
(Plain Text)

File
Size

(Byte)

Encrypted
File Size
(Byte)

Multiple Operator and ASCII Value
based text encryption scheme

(MOAV)

Chi-Square Value
Degree of
Freedom

loadfix.com 1131 1131 68012.914063 175

README.COM 4217 4217 191009.515625 245

diskcomp.com 9216 9216 247490.781250 248

ReadMe.txt 286 286 5488.802734 57

LICENSE.TXT 4829 4829 49900.523438 118

TechNote.txt 9232 9232 48316.464844 125

WINSTUB.EXE 578 578 578 75

mqsvc.exe 4608 4608 1085233.000000 228

label.exe 9728 9728 349128.875000 248

VIAPCI.SYS 2712 2712 110543.289063 212

rootmdm.sys 5888 5888 621606.812500 240

sffp_mmc.sys 10240 10240 569319.312500 252

iconlib.dll 2560 2560 9661.562500 150

KBDAL.DLL 6656 6656 3065705.250000 234

panmap.dll 10240 10240 1077958.875000 247

Figure 6.9 and Figure 6.10 show graphical representation of resultant chi-square and

degree of freedom values from MOAV scheme on different file types respectively.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

174

Figure 6.9: Representation of Resultant Chi-Square Values from MOAV Scheme

Figure 6.10: Representation of Degree of Freedom Values generated from MOAV

Scheme

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

175

Large key size increases the security in great extent for MOAV scheme. Besides this,

satisfactory performance is measured in respect of Chi-Square value and degree of

freedom value.

6.4. Multiple Operator and number of Zeros and Ones based text encryption scheme

(MOZO)

In MOZO3 scheme both the encryption and decryption are carried out by applying the

secret value derived from private key based on the number of ‘0’ and ‘1’ present in bit

representation of a plain text’s character. Generation of secret value is carried out by

performing arithmetic operation between Nth amicable number (where N is a positive

integer supplied by user) and derived decimal value where decimal value is generated by

executing arithmetic operation between numbers of ‘0’s and numbers of ‘1’s counted

from a plain text character’s eight bit binary representation. Base value and arithmetic

operators are supplied from the user and are fetched from respective blocks of the

primary key. Different secret value is generated and used for encryption of each of the

plain text’s character as the count of ‘0’s and ‘1’s are different for several numbers of

characters present in the plain text file. Thus this scheme enhances the security. Figure

6.11 represents the overall procedure for Multiple Operator and number of Zeros and

Ones based text encryption scheme (MOZO).

3 Published in International Journal of Innovative Technology and Exploring Engineering (IJITEE),

Volume 2, Issue 6, pp. 94-98, with title An approach of Bitwise Private-key Encryption Technique based

on Multiple Operators and Numbers of 0 and 1 counted from Binary Representation of Plain Text‘s Single

Character

Formation of plain text is done by converting each character into 8-bit binary

representation. Generate private key by inputs from the user.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

176

Figure 6.11: Overall procedure for Multiple Operator and number of Zeros and Ones

based text encryption scheme (MOZO)

Section 6.4.1 and section 6.4.2 represent the encryption and decryption process.

Experiment results are discussed in section 6.4.3 and section 6.4.4 represents the security

analysis of MOZO scheme.

6.4.1. Encryption Process

A. Formation of Plain Text

Step 1: Convert each character of plaintext file into 8-bit binary representation and store

the value into an array called PT[].

B. Private Key Formation

Step 1: Read the inputs for the first, second, fifth, sixth and seventh block of the private

One intermediate result (IR) is calculated first. IR = [N (1)-N (0)] o(N) N(1)(where

N(1) and N(0) are the counts of ‘1’ and ‘0’ from a plain text’s character

respectively, o(N) is Operator between N(0) and N(1)). The Nth amicable number is

generated with a forward movement from the base value (where N is a positive

integer with a range of 0 to 282-1). Then secret value (SV) is calculated. SV= (Nth

amicable number) o(B)[Number of times o(B) is executed] IR (where o(B) is base

operator).

Perform XOR block wise between the bits of secret value and the plain text’s

characters. Thus generate cipher text. The reverse procedure is followed for

decryption.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

177

key. The calculation is carried out from plain text to generate values for the third and

fourth block of the private key.

Step 2: Convert the inputs into binary representation corresponding to their respective

block’s size of the primary key. Store the values into an array named KEY[].

There are seven numbers of blocks in the private key where the length is 256 bits. The

first block represents the operator applied for base value. Value of the second block

defines how many times the operator is going to be performed. Third and fourth block

represents the count of ‘0’ and ‘1’ from eight-bit binary representation of a plain text’s

character respectively. The fifth block represents the operator applied to the values

represented by the fourth and third block. The sixth block holds base value. Seventh

blocks stores the Nth term for amicable number. Figure 6.12 represents the structure of

the private key.

 1st block 2nd block 3rd block

Operator applied for

base value o(b)

Number of time(s)

o(b) is going to be

executed

Count of ‘0’ from binary

representation of a plain text’s

character N(0)

 8 bits 2 bits 3 bits

 4th block 5th block 6th block 7th block

Count of ‘1’ from binary

representation of a plain

text’s character N(1)

Operator o(N)

between N(0)

and N(1)

Base value
Nth term for

amicable number

 3 bits 8 bits 150 bits 82 bits

Figure 6.12: Structure of 256 bits Private Key

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

178

C. Generation of Secret Value for Encryption

Step 1: Two decimal values N(1) and N(0) are calculated where they represent the count

of ‘1’ and ‘0’ from eight-bit binary representation of a plain text’s character respectively.

Step 2: Intermediate result (IR) is calculated using the following formula:

 IR = [N(1)-N(0)] o(N) N(1)(where N(1) and N(0) are the counts of ‘1’ and ‘0’ from

binary representation of a plain text’s character respectively, o(N) is operator between

N(0) and N(1)).

The Nth amicable number is generated with a forward movement from the base value

(where N is a positive integer with a range of 0 to 282-1).

Then secret value (SV) is calculated using the following manner:

For (int i=1 to NT)

{ SV= (Nth amicable number) o(b) IR }(where o(b) is the base operator and

NT=Number of times o(b) is performed).

Secret value is converted into binary representation and stored into array named DV[].

D. Formation of Cipher Text using XOR Operation

Step 1: XOR operation is done between array PT[] and array DV[] and the result is stored

in array CT[]. ASCII code is generated from the value of array CT[] and the encrypted

characters are generated from ASCII value. Thus generate ciphertext file.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

179

6.4.2. Decryption Process

A. Formation of Cipher Text

Convert each character from ciphertext file into 8-bit binary representation and store the

value into an array called CT[].

B. Generation of Secret Value for Decryption

Secret value is generated using section 6.4.1.C and the value is converted into binary

representation and stored into an array called DV[].

C. Generation of Cipher Text using XOR Operation

Step 1: Perform XOR operation between array CT[] and array DV[] and the result is

stored in array DT[]. ASCII value is generated from array DT[] and from there decrypted

character is generated. Thus generate the decrypted text file.

6.4.3. Experimental Results and Discussions

As the count of zeros and ones in each character of the plain text file and other inputted

operators determine the private key for each character, so different keys are used for

encrypting each character. Operators + and - are applied as base operator and operator

between (number of zeros) and (number of ones) respectively. Value 10000 and 100 are

considered as the base value and Nth term for the amicable number respectively. 2 is

considered as the value of number of time(s) base operation is performed.

Encryption is carried out by the secret value derived from the private key and 14954

milliseconds are needed for execution using a computer with Core 2 Duo 2.20 GHz

processor and 1.00 GB RAM. Table 6.7 represents encryption results.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

180

Table 6.7: Content of Plain Text, Decrypted Text and Cipher Text File for MOZO Scheme

Content of Plain Text Content of Encrypted Text Content of Decrypted Text

12345678tfeeygewhfwej

BHGDFRJHKMH=][';/.,

@#$%^&*()()_+|{}":?><

=>!8'$'4ftwwiwwydtywx44LF

UJJ^FFY_EF?-MK5+?<

T/*)N*&&%&%Q9lus,(1..

12345678tfeeygewhfwej

BHGDFRJHKMH=][';/.,

@#$%^&*()()_+|{}":?><

Table 6.8 shows execution results of MOZO scheme for different types of files using a

computer with Core 2 Duo 2.20 GHz processor and 1.00 GB RAM.

Table 6.8: Representation of Results of Encryptions for MOZO Scheme on Different Files

Plain Text File
Name

File Size
(Byte)

Size of
Encrypted
File (Byte)

Time needed for
Encryption

(Milliseconds)

Time needed
for Decryption
(Milliseconds)

loadfix.com 1131 1131 113547 113532

ReadMe.txt 286 286 113906 113892

WINSTUB.EXE 578 578 62359 62343

VIAPCI.SYS 2712 2712 148297 148281

iconlib.dll 2560 2560 130156 130145

README.COM 4217 4217 224047 224031

LICENSE.TXT 4829 4829 323500 323479

mqsvc.exe 4608 4608 213578 213557

rootmdm.sys 5888 5888 273968 273953

KBDAL.DLL 6656 6656 286015 285098

diskcomp.com 9216 9216 391781 391759

TechNote.txt 9232 9232 579831 579817

label.exe 9728 9728 410656 410644

sffp_mmc.sys 10240 10240 480703 480687

panmap.dll 10240 10240 592031 592012

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

181

Figure 6.13 graphically represents the relationship between file size and encryption time.

The graph shows there is a proportional relationship between file size and encryption

time.

Figure 6.13: Representation of Relationship between Encryption Time and File Size

6.4.4. Security Analysis of Multiple Operator and number of Zeros and Ones based

text encryption scheme (MOZO)

Table 6.9 represents Chi-Square values and degree of freedom values of MOZO scheme

on different file types where Chi-Square value and degree of freedom value are

calculated as per the equation 3.1 and 3.2 respectively mentioned in chapter 3.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

182

Table 6.9: Resultant Degree of Freedom and Chi-Square Values from MOZO Scheme

File Name
File Size
(Byte)

Encrypted
File Size
(Byte)

Multiple Operator and number of
Zeros and Ones based text encryption

scheme (MOZO)

Chi-Square Value

Degree of
Freedom

iconlib.dll 2560 2560 1959282.875000 144

KBDAL.DLL 6656 6656 7593299.000000 234

panmap.dll 10240 10240 10600647.000000 248

VIAPCI.SYS 2712 2712 74822.421875 211

rootmdm.sys 5888 5888 1753322.625000 238

sffp_mmc.sys 10240 10240 3482557.250000 252

WINSTUB.EXE 578 578 620.333374 70

mqsvc.exe 4608 4608 2918791.750000 223

label.exe 9728 9728 2807712.000000 249

ReadMe.txt 286 286 607.052612 58

LICENSE.TXT 4829 4829 22186.935547 118

TechNote.txt 9232 9232 112907.921875 129

loadfix.com 1131 1131 14604.628906 181

README.COM 4217 4217 147652.125000 247

diskcomp.com 9216 9216 1782321.875000 247

Figure 6.14 and Figure 6.15 represent a graphical representation of the degree of freedom

values and Chi-Square values from MOZO scheme for different types of file.

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

183

Figure 6.14: Representation of Chi-Square Values generated from MOZO Scheme

Figure 6.15: Representation of Degree of Freedom Values generated from MOZO

Scheme

Chapter 6: Text Encryption Building Blocks using Operators and Position of Bits in

Plain Text

184

Satisfactory Chi-Square value and degree of freedom value are measured for MOZO

scheme where the presence of higher key length has increased the security to great extent.

6.5. Conclusion

A separate secret value is generated and applied for encryption of each character of plain

text by the implemented schemes as formation of ‘0’ and ‘1’ of each distinct character,

ASCII code for each distinct character and number of ‘0’s, ’1’s present in several

characters from the plain text file are different. So the security is increased.

As the secret value formation procedure is private and distributed between only sender

and receiver, so the system is secured in spite of stealing of the private key. Thus the

security is enhanced.

Encryption time is independent of file types as the encryption is carried out in bit level

for the implemented schemes. So conclusions may be carried out that the newly

developed text encryption schemes may provide great security for text encryption.

