M.Sc. 4th Semester Examination, 2013 ELECTRONICS

(Microwave Devices and Circuits)

(Theory)

PAPER - ELC-401

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

- 1. (a) Why two-cavity Klystron oscillators are not usually constructed?
 - (b) Write down the scattering matrix for an ideal 4-port circulator.

(Turn Over)

- (c) Why microstrip transmission line is preferred over any other type of transmission line?
- (d) Why ferrite devices are called non-reciprocal devices?
- (e) Prove that three ports of a loss-less passive Tee-junction, when reciprocal in nature, can not be matched simultaneously. 2 × 5
- 2. (a) Why the conventional tube like triode, tetrode can not generate microwave power?
 - (b) Describe how velocity modulation of a beam is obtained in Klystron amplifier and hence derive and expression for it.
 - (c) How does a reflex klystron differ from Klystron amplifier? 2+6+2
- 3. (a) How a slot line differs from a microstrip line?
 - (b) Describe the role of dielectric in the design of microstrip. Derive Q-value of a microstrip line.

(Continued)

- (c) In a microstrip line, duroid ($\varepsilon_r = 2.56$) is used as a substrate material and if the line has an attenuation of 20 dB and Q = 10, calculate the operating frequency of the line. 2+4+4
- 4. (a) Draw the schematic diagram of a GaAs MESFET and its small signal equivalent circuit. State the intrinsic and extrinsic elements of a MESFET.
 - (b) In GaAs: MESFET has the following parameters:

$$R_G = 6 \Omega$$
; $R_i = 2 \Omega$; $g_m = 60 \text{ mmho}$;
 $R_d = 400 \Omega$, $R_s = 2 \Omega$, $C_{gs} = 0.5 \text{ pF}$.

Calculate:

- (i) The cut off frequency.
- (ii) The maximum operating frequency.

4 + 2 + 4

5. (a) Discuss the physical structure and principle of operation of a Quantum Well Injection Transit Time (QWITT) diode.

- (b) What are the advantages of MICs over discrete circuits? State the basic properties required for an ideal (i) substrate material and (ii) conductor material used in MICs. 5 + 5
- 6. (a) Draw a neat sketch of a magic-tee and state its transportation characteristics.
 - (b) Explain the construction and working principle of an IMPATT diode.
 - (c) Explain the operation of a directional coupler and define (i) coupling coefficient (ii) directivity. 4+2+4

[Internal Assessment: 10 Marks]