M.Sc. 2nd Semester Examination, 2011 ELECTRONICS

(Digital Electronics)

PAPER-ELC-202

(Theory)

Full Marks: 40

Time: 2 hours

Answer Q. No. 1 and any three questions from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any five questions:

 2×5

(a) Draw 'NOT' gate using transistor.

(b) For K-Map given in the Fig 1. Find the minimal sum of the products.

	$ar{A}ar{B}$	$\vec{A}B$	AB	$A\overline{B}$
$\bar{C}\bar{D}$		1	1	
$\bar{C}D$		1	;	
CD		1	1	
$Car{D}$		1	1	

Fig. 1

- (c) Why the successive approximation type ADC is faster?
- (d) Why EPROM is called floating gate type ROM?
- (e) What do you mean by the 'Resolution' of a D/A converter?
- (f) Implement the following Boolean, expression using all 'NOR' gates:

$$Z = (A + B) (B + C) (C + A)$$

- 2. An agreement exists between three persons: A, B and C that calls for all business policy decisions by a majority vote. But in the interest of avoiding animosity among them the voting is to be done secretly through a voting machine.
 - (a) Develop an appropriate truth table.
 - (b) From the results of (a) design a digital logic circuit that provides an output of logic-1, whenever the majority vote is 'yes'. Be sure to finish a minimum implementation.
 - (c) Modify the logic diagram of voting machine of part (b) so that only 'NAND' gates are used.

 2+4+4
 - 3. (a) What is charged coupled device memory? How does it differ from Shift Rgister? Explain its working principle.
 - (b) Design a memory circuit using two memory units of size 1K × 4 to make a memory of size 2K × 4.
 - 4. (a) Mention the applications of A/D and D/A converters (two examples in each case).

- (b) Explain with a suitable diagram, the working principle of a weighted-register D/A converter.
- (c) Explain, with a diagram, the working principle of a CMOS inverter. 2+4+4
- 5. (a) What is the difference between Astable and Monostable multivibrators?
 - (b) Explain the working principle of Astable multivibrator using IC-555. Show all the necessary diagrams.
 - (c) The values of two resistors $R_A = R_B = 1 \text{k}\Omega$ and the capacitor, $C = 0.01 \, \mu\text{F}$ in the 555-Astable multivibrator are assigned. Find the frequency of the output voltage. 2+6+2
- 6. Two functions $f_1 = \sum m (1, 2, 3, 5, 6, 7, 8, 12, 13, 15)$ and $f_2 = \sum m (2, 3, 4, 8, 13)$ are plotted in two separate K-maps. From these two K-maps find the K-maps for (i) $F_1 = f_1 \cdot f_2$ and (ii) $F_2 = f_1 + f_2$ and find the POS form of F_1 . 2 + 2 + 6