2011

M.Sc.

1st Semester Examination

ELECTRONICS

PAPER-ELC-103

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Network Analysis and Synthesis)

Answer Q. No. 1 and any three questions from the rest.

1. Answer all questions:

2×5

a) A network is expressed by the following differential equation:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = \frac{dx}{dt} + 2x$$

Obtain the transfer function, if 'x' is the input and 'y' is the output.

b) Using Thevenin's theorem, find the current 'i' thro the resistor 'R' in the circuit:

c) The impedance of a circuit is given by

$$\vec{Z} = 2 + 3j \Omega$$

Find the conductance.

- d) Draw the circuit diagram of a symmetrical balanced-bridge T network.
- e) Write down the difference between band-pass band-stop filters.
- 2. a) The reduced incidance matrix of a network is gibelow:

Find:

- (i) Complete incidence matrix;
- (ii) Without drawing the connected graph the branches in series and also in parallel;
- (iii) Whether the branches (2, 3, 4) will form a tree or not. (1+2+2)
- b) For the network as shown in Fig. Q.2(b), find the current through 4Ω resistance using Superposition theorem:

Fig. Q.2(b)

3. a) The following data were obtained experimentally for an unknown two-port network. Obtain the Z-parameters:

	V_1	V_2	I	${\rm I}_2$
Output open	100V	60V	10A	0
Input open	30V	40V	0	ЗА

b) The system function of a network is given by

$$H(s) = \frac{S(S+3)}{(S+2)(S^2+6S+25)}.$$
Snaw pole-zero diagram.

- 4. a) What are the properties of positive real function
 - b) Test whether the following function is a positive function or not?

$$H(s) = \frac{s^2 + 20s + 4}{s + 2}.$$

c) For the circuit as shown in Fig Q.4(c), find I, I_1 I_2 in phasor form. Draw phasor diagram sho V, I, I_1 and I_2 :

Fig. Q.4(c)

Given: $V = 200 \sin 314t$

5. a) The driving point impedance of a R-C circuit is given by:

$$Z(S) = \frac{S(S^2 + 2S + 1)}{(S+1)(S+2)}$$
Obtain the Foster form of the network.

5

b) Obtain the cauer form of the network if the driving Point impedance of LC network is given by:

$$Z(S) = \frac{S^2 + 8S + 5}{S(S + 4)}$$

6. a) CE transistor equivalent circuit is shown Fig. Q. 6(a). Find the h-parameters:

Fig. Q.6(a)

b) A simple R-C low pass filter is to be design so tha the output voltage be attenuated by 3 dB at 50 Hz Calculate the time constant and suitable values of F and C.

Take : $R = 10 \text{ K}\Omega$

c) What is Bode Plot?

4.4.0

Internal Assessment - 10