2011

M.Sc.

1st Semester Examination

ELECTRONICS

PAPER-ELC-102

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Electromagnetic Fields and Plasma Electronics)

Answer Q. No. 1 and any three questions from the rest.

1. Answer all questions:

 2×5

- a) Define V.S.W.R. Give the relation between V.S.W.R. and reflection coefficient.
- b) 'A reflector antenna is called a secondary antenna'.
 Why?

- c) What do you mean by cut-off wave length in rectangular wave guide?
- d) Explain the function of microwave grating.
- e) What is Debye screening distance?
- a) Derive an expression for voltage and current in ter of sending and receiving-end variables for a loss-l transmission line of finite length.
 - Find also the expression for input impedance of t line.
 - c) A 25m long loss-less transmission line is termina with a load having an equivalent impedance 40 + 30j at 10 MHz. The inductance and capacita of this line are 310 nH/m and 38 pF/m respectiv Calculate the input impedance at the sending-and mid-point of the line.

 5+2
- **3.** a) Why waveguides are preferred for transmissior microwaves instead of transmission lines?
 - b) Mention the factors on which the maximum po handling capacity of a waveguide depends.
 - c) An air-filled waveguide has dimensions of a = 6 and b = 4 cm. The signal frequency is 3 GHz. I
 (i) possible modes, (ii) cut-off frequency and (iii) g wavelength.
 2+2+(2+2)

- 4. a) To what does the word 'retarded' in the terminology 'retarded magnetic vector potential' refer? Explain.
 - b) Why microwave region is called a transition region?

 Deduce an expression for field distribution across the aperture of a parabolic reflector. (1+2)+(2+5)
- 5. a) Deduce the expression for the range of line of sight communication of space wave propagation if the transmitter and receiver heights are h_t and h_r respectively.
 - b) A radio link is set up between two points on the surface of the earth separated by a distance of 1.2×10^3 km. Single-hop transmission of the radio wave reflected from the E-layer is used. The height and the electron concentration of the reflecting layer are 110 km and 1.5×10^5 cm⁻³ respectively.

Calculate the angle with the horizontal at which the ray is launched at the transmitting point and the frequency of the wave. The radius of the earth is 6.4×10^3 km.

 $5+(2\frac{1}{2}+2\frac{1}{2})$

- **6.** a) Explain quasi-neutrality of plasma. How is maintained?
 - b) Describe with a diagram one of the laborat methods used for producing plasma.
 - c) What is the meaning of cut-off frequency of a plasm (2+2)+4

Internal Assessment - 10