2011

M.Sc.

3rd Semester Examination

ELECTRONICS

PAPER-ELC-302

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

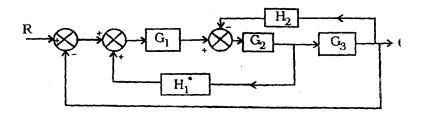
Illustrate the answers wherever necessary.

(Control System and Instrumentation)

Answer Q. No. 1 and any three questions from the rest.

1. Answer the following questions:

5×2


(a) For the system having

G(s) H(s) =
$$\frac{s+2}{(s+1)(s^2+5s+2)}$$

Find the characteristics equation.

- (b) Find the Z-transfom of eat using basic principle.
- (c) What is PID controller?
- (d) What are the advantages of feedback network in a control system?
- (e) Define the terms: 'Gain Margin' and 'Phase Margin' related to the stability of the system.

2. (a) Reduce the blocks by using Block diagram method

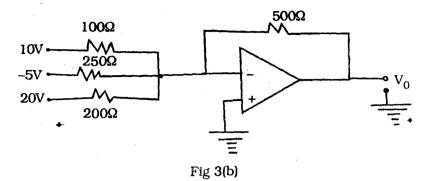
Also find the transfer function.

(b) A system is described by following equations:

$$X_2 = 2X_1 + X_3 + 2X_4 + X_5$$

 $X_3 = 3X_2$
 $X_4 = 4X_3 + 2X_1$
 $X_5 = 2X_3 + 2X_4 + 2X_5$

where X_1 is the input node and X_5 is the output node.


- (i) Draw the complete signal flow graph.
- (ii) Determine the overall gain of the system.

5+5

3. (a) Draw the Bode-plot for the system given by

$$H(s) = \frac{10(s+2)}{(s+1)(s+3)}$$

(b) For the OPAMP circuit as shown below, find the output voltage V_0 .

7+3

4. (a) For the closed loop control system as shown in Fig Q.4, determine the value of 'K' and 'a' such that the system has a damping ratio of 0.7 and undamped natural frequency of 4 rad/s.

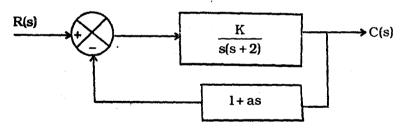


Fig 4

- (b) Draw the labelled block diagram model of a Cathode Ray tube.
- (c) The characteristics equation of a system is given by:

$$q(s) = s^4 + 8s^3 + 18s^2 + 16s + 5$$

= 0

Test, using Routh stability criteria, whether the system is stable or not. 4+2+4

- 5. (a) What is the function of spectrum analyser? State it field of application. State its frequency range of operation. Draw the labelled block diagram model of a basic spectrum analyser.
 - (b) What is wave analyser? State its field of application Classify the wave analyser on the basis of range c frequency operation.
 - Draw labelled block diagram model of any wav analyser. (1+1+1+2)+(1+1+3
- 6. (a) Explain with block diagram, the working principle of an audio frequency function generator. State its fiel of application.
 - (b) Write down the difference between the microwav and millimetre wave radio frequency wave analyses
 - (c) What is distortion analyser? State the types of distortion occur in the output signals of an amplification with reasons.

 4+2+4

[Internal Assessment - 10]