# M.Sc. 2nd Semester Examination, 2011

#### **ELECTRONICS**

(Optoelectronics Lab)

PAPER—ELC-205

(Practical)

Full Marks: 50

Time: 3 hours

### Answer any one question

The figures in the right-hand margin indicate marks

- 1. Draw I-V characteristics of LEDs of two different colours and hence compare the results of the two in respect of
  - (a) Working formula/theory.
  - (b) Circuit diagram. 2
  - (c) Implementation of the circuit.

3

5

|   | (d) Data for I-V characteristics. 9+                                                                                                                           | 9 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | (e) Drawing of graphs.                                                                                                                                         | 5 |
|   | (f) Comparison and discussion of the results obtained.                                                                                                         | 2 |
| • | Draw the applied voltage Luminous intensity characteristics of the supplied LEDs of two different colours and hence compare the results obtained in respect of |   |
|   | Experimental Marks Distribution                                                                                                                                |   |
|   | (a) Theory/Working formula.                                                                                                                                    | 5 |
|   | (b) Circuit diagram.                                                                                                                                           | 2 |
|   | (c) Implementation of the circuit.                                                                                                                             | 3 |
|   | (d) Data for L-V characteristics. 8+                                                                                                                           | 8 |
|   | (e) Drawing of graph.                                                                                                                                          | 5 |
|   | (f) Comparison and discussion of the results obtained.                                                                                                         | 4 |

3. Draw the characteristics of the given LDR at two light intensities. Calculate LDR resistance in both cases. Compare the resistances at the two intensities.

## **Experimental Marks Distribution**

| (a) | Theory with working formula.                       | 5   |
|-----|----------------------------------------------------|-----|
| (b) | Circuit diagram.                                   | 2   |
| (c) | Implementation of the circuit.                     | 3   |
| (d) | Data for characteristics curve. 7                  | + 7 |
| (e) | Drawing of graph.                                  | 5   |
| (f) | Calculation of resistance.                         | 2   |
| (g) | Comparison and discussion of the results obtained. | 4   |

4. Find the numerical aperture of the given optical fibre. Calculate the acceptance angle of the same fibre.

### **Experimental Marks Distribution**

|  | (a) | Working formula.                |  |  |  | 6  |
|--|-----|---------------------------------|--|--|--|----|
|  | (b) | b) Data for numerical aperture. |  |  |  | 20 |

PG/IIS/ELC-205/11 (Pr.)

(Turn Over)

(c) Calculation of numerical aperture.

(d) Calculation of acceptance angle.

(e) Discussion of the results obtained.

| 5.  | Measure the diameter of a narrow wire by diffraction of LASER beam. Measure the diameter by another method. Compare the results obtained by the two methods. |             |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
|     | Experimental Marks Distribution                                                                                                                              |             |  |  |  |  |
|     | (a) Working formula.                                                                                                                                         | 5           |  |  |  |  |
|     | (b) Data for diffraction band on both side central maximum.                                                                                                  | es of the   |  |  |  |  |
|     | (c) Calculation of diameter.                                                                                                                                 | 2           |  |  |  |  |
|     | (d) Diameter measurement by other meth                                                                                                                       | od. 8       |  |  |  |  |
|     | (e) Comparison of results obtained discussion.                                                                                                               | d and       |  |  |  |  |
| PG/ | IIS/ELC-205/11 (Pr.)                                                                                                                                         | (Continued) |  |  |  |  |

6. Study the optical conversion of 4-bit digital signal to its analog form by R - 2R ladder network.

## Experimental Marks Distribution

| (a) Theory and Working formula.        | 5  |
|----------------------------------------|----|
| (b) Circuit diagram.                   | 2  |
| (c) Implementation of the circuit.     | 3  |
| (d) Data for different digital inputs. | 18 |
| (e) Drawing of graph.                  | 5  |
| (f) Discussion of results obtained.    | 2  |

7. Given a narrow wire of known diameter (use any conventional method to measure it) determine the wavelength of light by diffraction of LASER beam.

### **Experimental Marks Distribution**

| Theory          |   | <b>— 05</b> |
|-----------------|---|-------------|
| Data and Result |   | <b>— 25</b> |
| Discussion      | , | <b>—</b> 05 |

8. Determine the diameter of a LASER beam at its input face by studying diffraction of LASER beam around a sharp edge on an optical bench.

### **Experimental Marks Distribution**

| Theory          | - 05        |
|-----------------|-------------|
| Data and Result | <b>— 25</b> |
| Discussion      | - 05        |

#### Marks Distribution

| LNB        | <b>— 05</b> |
|------------|-------------|
| Viva-voce  | 10          |
| Experiment | <b>—</b> 35 |
| Total      | <b>— 50</b> |