M.Sc. 2nd Semester Examination, 2011 ELECTRONICS

(Semiconductor Devices)

PAPER-ELC-204

(Theory)

Full Marks: 40

Time: 2 hours

Answer Q. No. 1 and any three questions from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any five questions:

 2×5

(a) Derive the expression of pinch-off voltage of a MESFET.

- (b) What do you mean by the neutral level of a metal semiconductor contact?
- (c) Discuss qualitatively how can you measure the switching speed of a transistor?
- (d) What is Schottky effect? How this effect influence the barrier height of a metal-semiconductor contact?
- (e) Draw the equivalent circuit of a unijunction transistor. Define the intrinsic stand-off ratio of the device.
- (f) Draw the physical structure of an integrated DIAC and sketch the I-V characteristics of the device.
- 2. (a) With a neat sketch, discuss different current components present in a P-N-P transistor. Define the terms base transport factor and emitter injection efficiency.
 - (b) For a P-N-P transistor derive the Ebers-Moll relation for I_E , I_C and I_B and from these current relation draw Ebers-Moll model.

(3+1+1)+(3+2)

- 3. (a) For a metal-semiconductor junction prove that $Eg = q \phi_{bn} + q \phi_{bp}$, where the symbols have their usual meaning.
 - (b) What is the image force induced lowering of potential energy for charge carrier emission of a Schottky diode? Prove that

$$\Delta \phi = \sqrt{\frac{qE}{4\pi t_0}}$$

where symbols have their usual meaning. What do you mean by surface states pinning effect? 4 + (4 + 2)

- 4. Draw the energy band diagram of an *n*-type Schottky barrier diode in the presence of interfacial layer and interface states. Derive an expression for the barrier height of the device. 2 + 8
- 5. (a) Discuss the principle of operation of a unijunction transistor with proper diagrams.

 Draw the output characteristics of the device and explain it.
 - (b) Indicate different uses of an SCR. (4+4)+2

- 6. (a) Define normally 'OFF' and normally 'ON' MESFET. Discuss qualitatively these MESFET with $\sqrt{I_D} V_g$ Plot and define threshold voltage.
 - (b) What do you mean by field dependent mobility? Derive the expression of transconductance of a MESFET operated in the saturation velocity region.

(2+2+1)+(1+4)