M.Sc 1st Semester Examination, 2010

ELECTRONICS

(Electronic Circuit Laboratory)

PAPER-ELC-106

(Practical)

Full Marks: 50

Time: 3 hours

Answer any one question, selecting it by a lucky draw

The figures in the right-hand margin indicate marks

Design a regulated power supply of variable output using LM 317. (a) Working formula. (b) Circuit diagram with labelling. 3 (c) Circuit implementation on bread board. (d) Recording of data for load and line regulation characteristics (one set each). 5 + 5(e) Drawing of graphs. 4 + 4(f) Calculation of percentage regulation and stability factor for $I_L = \cdots mA$ and

 $V_{ij} = \cdots V$ respectively.

(g) Discussion of the results obtained.

2 + 2

Design a regulated power supply using 78 XX

	group (regulator) and study its performance.		
	(a)	Working formula.	4
-	(b)	Drawing of circuit diagram with labelling.	3
	(c)	Implementation of the circuit on a bread board.	3
,	(<i>d</i>)	Recording of data for load and line regulation characteristics (one set each). 5	+ 5
	(e)	Drawing of graphs. 4	+ 4
	(f)	Calculation of percentage regulation and stability factor for $I_L = \cdots mA$ and $V_{i1} = \cdots V$ respectively.	+ 2
	(g)	Discussion of the results obtained.	3

3. Design a regulated power supply using power transistor as a pass element and another transistor as a comparator.

Output current = \cdots mA, output voltage = \cdots V.

(a) Working formula.

(b) Circuit diagram with labelling.

3

(c) Design considerations.

- 4
- (d) Circuit implementation on a bread board.
- (e) Recording of data for load and line regulation characteristics.(one set each) 4+4
- (f) Drawing of graphs.

- 3 + 3
- (g) Calculation of percentage regulation and stability factor at $I_L = \cdots MA$, and $V_A = \cdots V$ respectively. 2+2
 - (h) Discussion about the results obtained.

2

4. Design a regulated power supply using a power transistor as a pass element and an OPAMP as comparator.

(a)	Working formula.	4
(b)	Circuit diagram with labelling.	. 3
(c)	Design considerations.	4
(<i>d</i>)	Circuit implementation on a bread board.	4
(e)	Recording of data for load and line regulation characteristics. (one set each).	on 4 + 4
(f)	Drawing of graphs.	3 + 3

- (g) Calculation of percentage regulation and stability factor at $I_L = \cdots M$ and $V_{i1} = \cdots V$ respectively. 2+2
- (h) Discussion about the results obtained.

5. Study the performance of a logarithmic amplifier using OPAMP.
(a) Working formula.
(b) Drawing of circuit diagram with labelling.
3

(c) Implementation of the circuit on a bread board. 3

(d) Recording of data by varying the input voltage from 0 to 3 V at steps of 0.1 V. 10

(e) Drawing of characteristic curves. 4+4

(f) Discussion about the nature of curves and the results obtained.

(g) Writing of possible applications of the circuit using the results obtained.

v.	amplifier using OPAMP.		
	(a)	Working formula.	4
	(b)	Drawing of circuit diagram with labelling.	3
	(c)	Implementation of the circuit on a bread board.	3
	(<i>d</i>)	Recording of data by varying the input voltage.	10
	(e)	Drawing of characteristic curves. 4	- 4
	()	Discussion about the curves and the results obtained.	
٠	(g)	Discussion of possible applications of the	:

7.		er and study its performance.	
	(a)	Working formula.	4
	(b)	Circuit diagram with labelling.	3
	(c)	Design considerations for cut-off frequency = ······Hz and gain = ······	_ 5
•	(d)	Implementation of the circuit on a bread board.	3
	(e)	Recording of data for frequency response characteristics.	8
	(1)	Drawing of graph.	4
	(g)	Finding the cut-off-frequency and comparison of it with the supplied value.	⊦ 2
•	(h)	Finding the Roll-off-rate for the filter.	2
	(:)	Discussion of the results abtained	2

Design a first order active high-pass Butterworth 8. filter and study its performance. (a) Working formula. (b) Circuit diagram with labelling. considerations for cut-off Design frequency =Hz and gain = 5 (d) Implementation of the circuit on a bread board. 3 (e) Recording of data for frequency response cna. acteristics. 8 (f) Drawing of graph. (g) Finding the cut-off-frequency and comparison of it with the supplied value. 2 + 2(h) Finding the Roll-off-rate for the filter. Discussion of the results obtained.

9. Design a second order active low-pass Butterworth filter and study its performance. (a) Working formula. (b) Circuit diagram with labelling. (c) Design considerations for cut-off frequency $= \cdots Hz$ and gain $= \cdots$ 5 (d) Implementation of the circuit on a bread board. (e) Recording of data for frequency response characteristics and drawing graph. 8 + 4(f) Finding the cut-off-frequency and comparison of it with the supplied value. 2 + 2(g) Finding the Roll-off-rate for the filter. (h) Discussion of the result obtained. 2

10.	Design a second order active high-pass Butterworth filter and study its performance.				
	(a)	Working formula.	4		
	(b)	Circuit diagram with labelling.	3		
	(c)	Design considerations for cu frequency = ······Hz and gain = ·····.	ıt-off		
	(d)	Implementation of the circuit on a bread	board.		
	(e)	Recording of data for frequency rescharacteristics and drawing graph.	ponse 8 + 4		
	(f)	Finding the cut-off-frequency and compof it with the supplied value.	arison 2 + 2		
	(g)	Finding the Roll-off-rate for the filter.	2		
	(h)	Discussion about the results obtained.	2		

Distribution of Marks

Experiment — 35
Viva voce — 10
L.N.B — 05
Total — 50