M.Sc. 1st Semester Examination, 2010 ELECTRONICS

(Analog Electronics)

PAPER-ELC-104

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer all questions:

 2×5

- (a) What is SMPS? Write down its differences from an ordinary power supply?
- (b) Write down the advantages of active filters over passive ones.

(c) Find out V_0 of the following circuit.

- (d) The output of an adder having three inputs is such that it is equal to the sum of the inputs with a negative sign. Draw the necessary circuit.
- (e) Explain the term synchronization related television.
- 2. (a) Draw the circuit diagram of an active low pass 1st order Butterworth filter and describe its principle of operation.
 - (b) Define the terms Roll Off Rate and cut-off frequency for the above filter.
 - (c) Design a first order active high pass
 Butterworth filter at a cut-off frequency
 1 kHz and a pass band gain of 2. 4+3+3

- 3. (a) Draw schematic diagram of a vidicon TV camera tube and describe its operation.
 - (b) What do you mean by interlaced scanning? How it operates?
 - (c) Explain why integrators are invariably preferred to differentiators in analog computations. 3+(2+2)+3
- 4. (a) Draw the circuit diagrams of logarithmic and antilogarithmic amplifiers using I_c 741 and explain their operations.
 - (b) Using logarithmic and antilogarithmic amplifiers discuss how analog multiplication and division could be performed. 6 + (2 + 2)
- 5. (a) Describe how phase detection could be achieved in PLL using XOR phase detector.

- (b) What is frequency shift keying?
- (c) Discuss the principle of operation of a Schmittigger.
- (d) For the following circuit prove that

$$V_0 = V_2 \left(\frac{R_1 + R_2}{R_3 + R_4} \right) \frac{R_4}{R_1} - V_1 \frac{R_2}{R_1}$$

- 6. (a) What do you mean by a voltage controlled oscillator?
 - (b) Explain the principle of operation of a VCC using proper circuit diagram.

(c) The circuit with the values of the components is shown below:

- (i) Determine the nominal frequency of the output waveforms.
- (ii) Compute the modulation in the output frequencies if V_C is varied between 9.5 V and 11.5 V.

- (iii) Draw the square-wave output waveform if the modulating input is a sine wave.
- (d) Discuss how you can generate a variable power supply using I_C LM 317. 1+3+3+3

[Internal Assessment: 10 Marks]