M.Sc. 1st Semester Examination, 2010 ELECTRONICS

(Network Analysis & Synthesis)

PAPER-ELC-103

Full Marks: 50

Time: 2 hours

Answer Q.No.1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer all questions:

2 x 5

- (a) Write the testing procedure of positive real function.
- (b) What do you mean by characteristic impedance of a network?

(c) A network is expressed by following differential equation:

$$\frac{5 d^2 y}{dt^2} + \frac{3 dy}{dt} + 2y = \frac{2 dx}{dt} + x$$

where, 'X' is input and 'Y' is output obtain the transfer function.

- (d) What is Bode diagram?
- (e) The impedance of a circuit is given by

$$\vec{Z} = 5 + j6 \Omega$$

Find the conductance of the circuit with its unit.

2. (a) The Reduced incidence matrix of a network is given below:

		Branches →						
		1	2	3	4	5	6	
Nodes ↑	a	1	0	0	-1	0	-1	-
	b	Ó	1	0	1:	-1	0	
	C	0	. 0	1	0	1	1	
	d							

- (i) Obtain the complete incidence matrix.
- (ii) Without drawing the connected graph, find the branches in series and in parallel.
- (b) Using Thevenin's theorem, determine the current through 10Ω resistance of the circuit as shown in Fig 1.

$$(2+1\frac{1}{2}+1\frac{1}{2})+5$$

3. (a) The following readings were obtained experimentally for an unknown two-port network. Determine the Y-parameters.

	I_1	I_2	V_1	V_2
 Output shorted	5 mA	0-3 mA	25 V	0
Input shorted	5 mA	10mA	0	30 V

(b) The system function of a network is given a

$$H(S) = \frac{S(S+2)}{(S+1)(S^2+4S+13)}$$

Draw Pole-zero diagram.

4. (a) For the network as shown in Fig. 2, find I

I_C in phasor form. Also draw phasor diagr
Given:

 $V(t) = 220\sqrt{2} \sin 31$

- (b) State the conditions for which a system functH(S) is said to be positive real function.
- (c) The system function of a network is given t

$$H(S) = \frac{S^2 + 10S + 4}{S + 2}$$

Test whether it is a positive real func or not.

5. (a) Find the 3dB bandwidth of the circuit of Fig. 3.

(b) Perform continued fraction expansion of

$$Y(S) = \frac{S^3 + 2S^2 + 3S + 1}{S^3 + S^2 + 2S + 1}.$$

and draw the network.

5 + 5

6. (a) The driving point impedance of an LC network is given by

$$Z(S) = \frac{4S(S^2+4)}{(S^2+1)(S^2+16)}.$$

obtain Foster form of network.

(b) The driving point impedance of a R - C network is given by

$$Z(S) = \frac{S^2 + 8 S + 5}{S(S+4)}.$$

obtain Caver form of network.

5.5

[Internal Assessment: 10 Marks]