M.Sc. 1st Semester Examination, 2010 ELECTRONICS

(Electromagnetic Fields and Plasma Electronics)

PAPER-ELC-102

Full Marks: 50

Time: 2 hours

Answer Q.No.1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

- 1. Answer all questions of the following: 2×5
 - (a) Express the secondary constant of a transmission line in terms of its primary constants and its primary constants in terms of its secondary constants.

- (b) A lossless transmission line is terminated in a short-circuit. What is the minimum length of the line so that the input impedance is capacitive?
- (c) A 2 m long air-filled rectangular waveguide of a = 2 cm and b = 1 cm supports the TM₁₁ mode with a propagation constant of $\hat{\gamma}_{11} = \hat{\jmath} 200$. What is the operating frequency of the waveguide?
- (d) A dipole antenna has a length of $\lambda/8$ m. What is its radiation resistance?
- (e) What is Debye screening distance?
- (a) Draw the equivalent electric circuit model for lossy transmission line.
 - (b) Obtain an expression for input impedance of a lossy line in terms of voltage reflection coefficient.
 - (c) A lossy transmission line is operated at 100 MHz and has $Z_c = (75 + j0) \Omega$, $\alpha = 0.02 \text{ Np}/\text{m}$ and $\beta = 3 \text{ rad/m}$. Determine the per-unit length resistance, inductance, capacitance and conductance of the line. 2 + 4 + 4

- 3. (a) A square, air filled waveguide operates in the TE₂₂ mode at twice the cut-off frequency. If both components of the electric fields have amplitude 100 V/m, calculate the average power transmitted by the guide?
 - (b) Obtain an expression for the average power transmitted by the same guide in TM₁₁ mode.

5 + 5

- 4. (a) A rectangular cavity resonator made of copper has dimensions a = 3 cm, b = 1 cm and l = 4 cm, and operates at the dominant mode. Determine the resonant frequency and quality factor of this resonator. The conductivity of copper is 5.76×10^7 S/m.
 - (b) An electric dipole of length 50 cm is situated in free space. If the maximum value of the current is 25 A and its frequency is 10 MHz. Calculate (i) the electric and magnetic fields in the far zone. (ii) the average power density (iii) the radiation resistance.

- 5. (a) Derive the expression for the field strength of space wave propagation in tropospheric conditions.
 - (b) Explain the terms 'skip distance' and 'critical frequency' in connection with sky wave propagation.

 6+4
- 6. (a) Show that the critical frequency for propagation of e.m. waves in plasma is given by

$$f_c = 9\sqrt{\pi_0}$$
, where $\pi_0 = \text{no. of electrons/m}^3$.

- (b) Calculate the plasma frequency and maximum penetration depth for a plasma containing 10¹⁸ electrons/m³
- (c) What is Debye screening distance? 4+4+2

[Internal Assessment: 10 Marks]