M.Sc. 4th Semester Examination, 2010 ELECTRONICS

(VLSI Technology)

PAPER-EL-2204

(Theory)

Full Marks: 40

Time: 2 hours

Answer Q. No. 1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their

own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any five questions:

 2×5

- (a) Give reasons to determine which environment you consider the best: a class 10, a class 100, or a class 1000.
- (b) Why is 'ion chanelling' not a favoured situation in the implantation of atoms in a semiconductor?

- (c) How can you grow a silicon nitride thin film?

 Mention its uses in VLSI fabrications.
- (d) What is the bird's beak structure? How is it prevented?
- (e) What are the factors that restrict an arbitary scaling down of the MOSFET gate oxide thickness?
- (f) Mention the factors to be considered for packaging a VLSI chip.
- 2. (a) What do you mean by predeposition and drive-in diffusions?
 - (b) Establish Fick's diffusion equation. How does the diffusivity vary with the temperature and dopant concentration?
 - (c) For a boron diffusion in silicon at 1000°C, the surface concentration is maintained at 10¹⁹ cm⁻³ and diffusion time is 1 hour. Find the total number of dopant atoms per unit area of the semiconductor, and the junction depth

where the dopant concentration reaches $10^{15} \, \text{cm}^{-3}$. Given diffusion coefficient of boron in silicon at 1000°C is $2 \times 10^{14} \, \text{cm}^2 \text{s}^{-1}$.

$$2 + (2 + 2) + (2 + 2)$$

- 3. (a) What are the different methods used for producing the image of a mask on a wafer surface? Discuss the methods.
 - (b) What are the photoresist and electron resist?
 Which type of resist is a better one: a positive resist or a negative resist? Give reasons.

$$(1+5)+(2+2)$$

- 4. (a) Describe, with neat diagrams, the fabrication steps for a CMOS.
 - (b) What is the utility of a refilled trench technique in the fabrication of a CMOS device?
- 5. (a) Compare among bipolar, CMOS and BiCMOS technologies.
 - (b) What is meant by "VLSI design rules"?

(c) What is a stick diagram? Draw stick diagrams of a PMOS, an NMOS and a CMOS inverter.

$$3+2+(2+1\times 3)$$

6. Write notes on any two:

 5×2

- (i) Etching
- (ii) Hot electron effects in VLSI structures
- (iii) Electromigration.