M.Sc 1st Semester Examination, 2010 ELECTRONICS

(Mathematical Methods and Numerical Analysis)

PAPER-ELC-101

(Theory)

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer all questions:

2 x 5

(a) State the sufficient conditions for existence of Laplace transform.

(b) Let F(w) be the Fourier (exponential) transform of f(x) and G(w) be that of g(x) = f(x + a). Show that

$$G(w) = e^{-iaw} F(w).$$

- (c) Write down Cauchy-Riemann conditions for a function f(z) to be analytic in a certain region of complex plane.
- (d) Round off the following numbers correct upto four decimal places.

- (e) Write all the logical and relational operators in C language.
- 2. (a) Find the Laplace transform of $J_0(t)$ by using initial value theorem.
 - (b) Prove Parseval's theorem for the Fourier transform. State its significance. 5+(4+1)
- 3. (a) State Cauchy's integral theorem and apply the Cauchy-Riemann condition to prove it.

- (b) Describe Gauss-Jordan iteration method to solve a system of linear equations. (1+5)+4
- 4. (a) State and prove convolution theorem concerning on Fourier transform.
 - (b) Show that

$$\int_{-1}^{1} P_n(x) dx = \begin{cases} 0, & \text{when } n \neq 0 \\ 2, & \text{when } n = 0. \end{cases}$$

(c) Solve the following ODE by Laplace transform

$$y''(t) + a^2y(t) = f(t),$$

subject to y(0) = 1, y'(0) = -2. 4 + 2 + 4

- 5. (a) Describe bisection method to solve the equation f(x) = 0, when a root lies between a and b. What is the draw back of this method?
 - (b) Solve the differential equation

$$\frac{dy}{dx} = x^2 + y^2$$
, $y(0) = 1$

by fourth order Runge-Kutta method for x = 0.2. (4+1)+5

- 6. (a) Explain 'if-else' statement in C. Also draw the flowchart of this statement. When this statement becomes simple 'if' statement?
 - (b) The function f(x) is defined as follows:

$$f(x) = \begin{cases} x^2 + \sin x, & 0 \le x < 2 \\ e^{-x} + x^2, & 2 \le x \le 5 \end{cases}$$

Find the values of f(x) for x = 0.0, 0.5, 1.0, 1.5, 2.0. (2+2+1)+5

[internal Assessment: 10 Marks]