M.Sc. 4th Semester Examination, 2010 ELECTRONICS

(Microwave Devices and Circuits)

PAPER —EL-2201

(Theory)

Full Marks: 40

Time: 2 hours

Answer Q.No.1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any five questions

2·x 5

- (a) Explain the action of magnetic field used in the cavity magnetron.
- (b) Write down the difference between the transferred electron devices and avalanche transist time devices.

- (c) How can a 4 port directional coupler be utilized to measure the VSWR of a given load?
- (d) Prove that three ports of a loss-less passive Tee-junction, when reciprocal in nature, can not be matched simultaneously.
- (e) What are the dominant modes of a circular cavity resonator? State the advantages of TE₀₁ mode over TE₁₁ mode over TE₁₁ mode of a circular cavity resonator.
- (f) Why ferrite devices are called non-reciprocal devices?
- 2. (a) A helix travelling wave tube is operated with a beam current of 300 mA, beam voltage of 5 kV, and characteristic impedance of 20 Ω. What length of the helix will be selected to give an output power gain of 50 dB at 10 GHz?
 - (b) Draw the equivalent circuit of IMPATT diode. An IMPATT diode with nominal frequency of 10 GHz, has an R_d of -3Ω , RF peak current of 0.65 A and with breakdown bias of 80 V, 80 mA. Find the power gain in dB. 2+3

3.	(a)	What is a slow-wave structure? What is the
		major difference between the travelling wave
		tube and the klystron?
. •	(b)	Draw a schematic diagram of a helix TWT and
	•	explain its principle of operation.
4.	(a)	How a slot line differs from a microstrip.
		line?
	(b)	Discuss the role of dielectric in the design of
	•	microstrip. Derive Q of a microstrip line. $2+$
	(c)	In a microstrip line, duroid ($\varepsilon_r = 2.56$) is used
		as a substrate material and if the line has an
		attenuation of 20 dB and $Q = 10$, calculate the
		operating frequency of the line.
	et j ty	
	4, 1	
5.	(a)	Draw the schematic diagram of a GaAs
		MESFET and its small signal equivalent circuit.
		State the intrinsic and extrinsic elements of a
		MESFET.

(b) A GaAs: MESFET has the following parameters:

$$R_G = 6\Omega$$
, $R_i = 2\Omega$, $g_m = 60$ m mho,

$$R_d = 400 \,\Omega$$
, $R_s = 2 \,\Omega$, $C_{gs} = 0.5 \,\mathrm{pF}$

Determine:

- (i) the cut-off frequency and
- (ii) the maximum operating frequency. (2+2)+2+(2+2)
- (a) Discuss the physical structure and the principle of operation of a Quantum Well Injection
 Transit Time (QWITT) diode.
 - (b) What are the advantages of Microwave Integrated Circuits (MICs) over discrete circuits? State the basic properties required for an ideal (i) substrate material and (ii) conductor material used in MICs. 2+3