M.Sc. 2nd Semester Examination, 2010 ELECTRONICS

(Electronic Materials)

PAPER-EL-1203

(Theory)

Full Marks: 40

Time: 2 hours

Answer Q. No. 1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any five questions:

 2×5

- (a) Why a Schottky defect is called a point defect and dislocation a line defect?
- (b) What is Hall effect? 'Hall coefficient is positive in some metals'—why?

- (c) Write Bollzmann transport equation and explain.
- (d) Draw a critical T-H-I diagram for superconductors and explain.
- (e) Give reason on which side you will illuminate a p-n junction solar cell to get a better performance. What is the structural difference in between the crystalline and amorphous silicon solar cells?
- (f) What do you mean by spin wave?
- 2. (a) Describe with suitable diagrams, edge dislocations and screw dislocations in crystal lattice.
 - (b) If 1 eV is required to move an atom from the interior of a crystal to its surface, what is the proportion of vacancies present in the crystal at 1000 K and at 300 K? $\left(3\frac{1}{2} + 3\frac{1}{2}\right) + \left(1\frac{1}{2} + 1\frac{1}{2}\right)$
- 3. (a) How does the electrical conductivity of a metal vary with: (i) impurity content, (ii) temperature?

- (b) Obtain a general expression for Fermi energy of electrons in a metal at absolute zero. Show that at the same temperature, the average energy of electrons is 3/5 th of the Fermi energy.

 (1+2)+(5+2)
- 4. (a) What are the different ferroelectric phases of barium titanate? Explain spontaneous polarization.
 - (b) What are conducting polymers? Explain the conduction mechanism in polyacetylene.

$$(2+3)+(1+4)$$

- 5. (a) Distinguish between type-I and type-II superconductors. Name some materials belonging tothese two types of superconductors.
 - (b) Show that in an ac Josephson effect current oscillates with frequency

$$w = \frac{2eV}{\hbar}$$

Where the symbols have their usual meanings. What is an inverse ac Josephson effect?

$$(2+1+1)+(4+2)$$

- 6. Write notes on any two:
 - (i) Oxide semiconductor
 - (ii) Quantum well
 - (iii) Optoelectronic material.

 5×2