M.Sc 1st Semester Examination, 2009 ELECTRONICS (Network Analysis & Synthesis) PAPER-EL-1103 Full Marks: 50 Time: 2 hours Answer Q. No. 1 and any three questions from the rest The figures in the right-hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable Illustrate the answers wherever necessary 1. Answer *all* questions: 2×5 - (a) State superposition theorem. - (b) Distinguish between 'Band-pass' and Band-stop filters. - (c) Draw the circuit for the symmetrical lattice section. - (d) What do you mean by a characteristics impedance of a network? - (e) What are the conditions for a polynomial to be called as Hurwitz? - 2. (a) Reduced incidence matrix of a network is given below: Branches $$\longrightarrow$$ 1 2 3 4 5 6 Nodes \uparrow a 1 0 0 -1 0 0 b 0 1 0 1 -1 0 c 0 0 1 0 1 -1 - (i) Obtain the complete incidence matrix. - (ii) Without drawing the connected graph, find the branches in series and in parallel. (b) Using Thevenin's theorem, determine the current through the 5Ω resistance of the circuit as shown in Fig 1. Fig. 1 $$\left(2+\left(1\frac{1}{2}+1\frac{1}{2}\right)\right)+5$$ 3. (a) The following readings were obtained experimentally for an unknown two-port network. Compute the Z-parameters. | , | <i>V</i> ₁ | V_2 | $I_{_1}$ | I_2 | |-------------|-----------------------|-------|----------|-------| | Output open | 100V | 60V | 10A | 0 | | Input open | 30V | 40V | 0 | 3A | (b) The system function of a network is given as $$H(s) = \frac{s(s+2)}{(s+1)(s^2+4s+5)}$$ Draw Pole-zero diagram. 5 + 5 4. (a) For the network as shown in Fig.2 find I, I_R and I_L in phasor form. Also draw phasor diagram. Given: $V(t) = 220 \sqrt{2} \sin 314t$ (b) Draw the Pole-Zero diagram of the system function given by $$Z(s) = \frac{S(S+5)}{(S+2)(S^2+4S+13)}$$ $$(1+1+1+2)+5$$ 5. (a) A system has system function given by $$H(s) = \frac{10(S+2)}{(S+1)(S+3)} = \frac{Y(s)}{X(s)}$$ Given: $x(t) = 2 \cos t$ Determine y(t) using Laplace transform. - (b) A band-pass filter consists of two R-C networks connected in cascade. The low-pass filter consists of resistance $R_1 = 10 \mathrm{k}\Omega$, and capacitor $C_1 = 1 \mathrm{pF}$, and high-pass filter consists of $R_2 = 1 \mathrm{M}\Omega$ and $C_2 = 0.01 \ \mathrm{\mu F}$. Find the lower and upper cut-off frequencies and band-pass gain. - 6. (a) The driving point impedance of an LC network is given by $$Z(s) = \frac{10(S^2+4)(S^2+16)}{S(S^2+9)}$$ obtain Foster form of network. (b) What is Bode plot? ·666 - 教養經過過過。 (c) The system function of a network is given by $$H(s) = \frac{(S+2)(S+4)}{S+1}$$ าเมืองที่ และสารฐานเทราร์ เหลือ แนวลา ของและ ของ ต้องสารแกรก Test whether it is a positive real function or not. [Internal Assessment: 10 Marks]