2007

ELECTRONICS

PAPER-III

Full Marks : 75
Time: 3 hours
The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
W rite the answers questions of each Group in separate books.

Answer ' Q.' No. 1 and any three from the rest in each group.

Group - A

(Marks : 4O)

1. (a) Discuss with block diagram how analog multiplication will be done using logarithmic \& antilogarithmic amplifiers.
(b) What is SMPS ? What are its differences from ordinary power supply unit?
(c) In what respects a colour television system differs from ordinary Television system ?
(d) Name two applications of the Phase Locked Loop.
(e) Why are the advantages of a crystal oscillator over other tuned oscillators?
2. Give two basic characteristics of a Power Supply Unit. What do you mean by Series \& Shunt Regulator? Compare between them. Draw the circuit Diagram, of a series regulator \& explain its principle of operation.
$2+2+1+5$
3. Write down the advantages of active filter over passive filter? Draw the circuit diagram of an active lowpass 1st. order Butter worth filter $\mathcal{\&}$ explain its operation. Define the term roll of rate $\boldsymbol{\&}$ cut off frequency for this case.
$2+5+3$
4. What do you mean by a regulated power supply? What is the difference between the monolithic voltage regulator chips 7906 and 7808 ? How can series regulation be achieved using an, OPAMP ? What is the advantage of a Switched Mode Power Supply ?
$2+2+3+3$
5. Differentiate between Class A, Class B d Class C amplifiers. Which is most efficient in power handling and why? What is cross-over distortion in a Class B amplifier? How can it be rectified? $3+3+2+2$
6. Write short notes (any two)
(a) VCO.
(b) TV Camera (Image Orthiem).
(c) Monolithic Voltage regulators.

Group - B

(Marks:35)

1. Reduce the Boolean functions:

1X5
(a) $\mathrm{F}=\mathrm{AB}+\mathrm{AD}+\mathrm{AB}+\mathrm{C}(\mathrm{A}+\mathrm{D})+\mathrm{ABD}$;
(b) $\mathrm{F}=\mathrm{B}+\mathrm{AB}+\mathrm{ACD}+\mathrm{AC}$;
(c) $\mathrm{F}=\mathrm{BCD}+\mathrm{ABD}+\mathrm{ABC}+\mathrm{ABD}+\mathrm{ACD}$
(d) $\mathrm{F}=\mathrm{ABC}+\mathrm{ABC}+\mathrm{ABC}+\mathrm{ABC}$;
(e) $F=m(1,2,5,6)$.
2. (a) Define Encoder: Explain octal to Binary Encoder with truth.. table and logic diagram. $1+4$
(b) Implement the following Boolean function by using MUX : $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{Y}_{-} \mathrm{m}(2,4,6,7,9,10,11,12,15)$
3. (a) Design a 5×32 decoder with four 3×8 decoders and a 2 x 4 decoder. 4
(b) Design a combinational circuit that converts It decimal digit from the 8421 code to 2421 code. 6
4. (a) Design a full adder using $3: 8$ decoder. 3
(b) Design a. BCD to Seven-Segment Code Converter. Draw the logic diagram. 7
5. (a) Design a combinational circuit using a suitable ROM which accepts 3 bit binary number as i / P and generates

an o/P which is square of i/P.	5
(b) Explain R-2R ladder D / A converter.	5
6. Write short notes on (any two) :	5×2

(i) Successive approximation type ADC.
(ii) Characteristic of MOS logic.
(iii) Shift register.
(iv) Flip flop.

