2008

2nd Semester Examination

ELECTRONICS

PAPER-EL-1204

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer Q. No. 1 and any four from the rest.

1. Answer any five questions:

5×2

- (a) Define the terms delay time and rise time in connection with transistor.
- (b) How electron mobility can be increased in HEMT' using two heterojunction?
- (c) How does the impact ionization differ from field ionization?
- (d) Write down the charge neutrality condition associated with the metal-semiconductor junction.
- (e) What do you mean by the 'Pinch off' of the channel in MESFET?
- (f) What do you mean by surface states pinning effect?
- (g) What is IMPATT diode?
- (h) Explain on what factors the speed of response of a switching transistor depends.

- 2. (a) Draw the basic circuit diagram of Ebers-Moll model and follow the model to derive the expression for the emitter and collector currents of a bipolar transistor.
 - (b) Draw the structure of an unijunction transistor and explain its operation. 5+5
- 3. State the basic assumptions of thermionic emission model and derive an expression for the thermionic current density flowing over a Schottky barrier diode under the application of bias voltage V. 2+8
- 4. Develop a graphical method to determine the density of interface states and neutral level of a metal-semiconductor contact with interface states and interfacial layer.

Explain how the barrier height and doping concentration of a metal-semiconductor diode can be determined from capacitance-voltage characteristics.

Show that the sum of the barrier heights of metalsemiconductor contacts on n and p-type semiconductor is the band gap of the semiconductor. 4+4+2

5. Draw the structure of an n-channel junction field effect transistor under the application of gate voltage $V_{\rm g}$ and drain voltage $V_{\rm d}$.

Obtain the depletion layer widths at the source and drain ends and derive an expression for the drain current of the device as a function of $V_{\rm d}$ and $V_{\rm g}$.

2+8

6. How does a MESFET differ from a JFET?

Explain why the electrical characteristics of a short channel MESFET deviate from those of a long channel MESFET.

Derive an expression for the drain current of a short channel MESFET. 1+3+6