2008

2nd Semester Examination

ELECTRONICS

PAPER-EL-1202

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Write the answers Questions of each group in separate books.

Answer Q. No. 1 and any three from the rest.

1. Answer any five questions:

5×2

- (a) Prove the Boolean function: $Y + \overline{X}Z = (X + Y + Z)(\overline{X} + Y + Z)(\overline{X} + Y + \overline{X})$
- (b) Express the function $F(X, Y, Z) = Y(\overline{X} + Z)$ to standard SOP form.
- (c) Find out an expression for a logic circuit that has three inputs A, B and C, and whose output will be high only when a majority of the inputs is high.
- (d) Define noise margin in Digital ICs.
- (e) An 8-bit converter has a full scale output voltage 12V. Find out voltage when the input is 01100110.
- (f) What are the performance characteristics of a D/A converter?
- (g) What is the difference between a hatch and a flip-flop?
- (h) Distinguish between Static RAM and Dynamic RAM.

(Turn Over)

	$f(A,B,C,D) = \sum m(1,3,5,8,9,11,15) + \sum \phi(2,13)$ 3+3	3
3.	(a) What do you mean by an N-to-1 digital multiplexer Design a 4-to-1 multiplexer using basic gates. 1+:	
	 (b) Implement the function F(A, B, C) = AB + BC using (i) 4-to-1 multiplexer and basic gates. 	g
	(ii) 2-to-1 multiplexer and other basic gates necessary. 3+3	
4.	(a) What is settling time?	2
	(b) Briefly explain the principle operation of a successive approximation ADC with a suitable circuit diagram	re n. 6
,	(c) An 8-bit successive-approximation converter has resolution of 15 mV. What will its digital output t for an analog input of 1.87V?	а эе 2
5.	A 555 timer configured as an astable multivibrator wit a pulse duration of 150 μ sec and 67% duty cycle,—	h
	(a) What is the ratio of R ₁ and R ₂ ?	
	(b) For C = 0.1 μ F, what are the values of R ₁ an R ₂	?
	(c) What is pulse repetition frequency? 3+3+	4

6. (a) What do you mean by Fan out of a digital IC? 1

 $F(A,B,C,D) = AB + \overline{C}D$ using C-MOS circuits.

of a SRAM cell using MOS circuits.

(c) With proper diagram describe the internal structure

(b) Implement a logic function

2. (a) Show that SOP and POS forms of a logic expression

Express it in the standard DOS form.

(b) A three variable function is $F(x, y, z) = \sum m(1,2,4,7)$.

Minimize the logic function and realize using NAND

2

3

6

are equivalent.

gates only.

(c)