2008

ELECTRONICS

[1st Semester]

PAPER-EL-1103

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

University written examination — 40 Marks
Internal Assessment — 10 Marks

1. Answer all questions:

2 x 5

- (a) What do you mean by the characteristic impedance of a network?
- (b) Obtain the Laplace transform of $e^{-at} \sin \omega t$.

(Turn Over)

(c) The system function of a network is given by

$$H(s) = \frac{(s+2)(s+5)}{s+1}$$
.

Test whether it is a positive real function or not.

- (d) What do you mean by resonance? Define Q factor in a series LCR circuit.
- (e) Distinguish between active and passive filters.
- 2. (a) Draw the pole-zero diagram of the system function

$$H(s) = \frac{s(s+3)}{(s+1)(s^2+4s+13)}.$$

(b) For the circuit as shown in Fig. Q. 2 (b), find the current I using superposition theorem.

- 3. (a) Derive an expression for the cut-off frequency of a constant k-high-pass filter.
 - (b) Design a T and π section constant k-high pass filter having cut-off frequency 10 kHz, and design impedance (R₀) is 500 Ω. Also find
 (i) its characteristic impedance at 25 kHz
 (ii) attenuation at 6 kHz. 4+(4+1+1)
- 4. (a) Write down the necessary condition of stability of a network function [F(s)].
 - (b) The driving point impedance of a LC network is given by

$$Z(s) = \frac{6s^3 + 2s}{12s^4 + 8s^2 + 1}$$

Develop the Cauer first form network for given function.

- (c) What do you mean by Bode diagram? 3+5+2
- 5. (a) Write down the difference between 'Band-pass' and 'Band-stop' filters.

- (b) A simple RC low pass filter is to be design that the output voltage be attenuated at 3 dB. at 50 Hz. Calculate the time constant and the suitable values of R and C.
- (c) Calculate the upper and lower cut-off frequencies and voltage amplification between these two frequencies for a band-pass active filter.

Given:
$$R_1 = R_2 = 10 \text{ k}\Omega$$

 $R_{f1} = R_{f2} = 100 \text{ k}\Omega$
 $R_L = R_H = 10 \text{ k}\Omega$
 $C_L = 1 \mu \text{F}, C_H = 1 \text{pF}$.

2 + 4 + 4

- 6. (a) What are the condition of a polynomial is said to be Hurwitz?
 - (b) Check whether the following polynomial are Hurwitz:

$$P(s) = s^5 + s^3 + 5.$$

(c) Find the second Foster form of the driving point admittence function

$$Y(s) = \frac{s(s^2 + 4)}{2(s^2 + 1)(s^2 + 9)}.$$