## 2008

## **ELECTRONICS**

[1st Semester]

PAPER-EL-1102

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any three other questions from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[ University written examination : 40 Marks & Internal Assessment : 10 Marks ]

## 1. Answer all questions:

 $2 \times 5$ 

- (a) What are the reflection coefficients for the transmission line if the lines are
  - (i) terminated by its characteristic impedance, and
  - (ii) open-circuited?

- (b) What type of waveguide we will prefer square or rectangular, and why?
- (c) What do you mean by resonant antenna and non-resonant antenna?
- (d) How is space wave affected by atmospheric condition?
- (e) What is meant by dc break down?
- 2. (a) Define reflection coefficient and standing wave ratio of a transmission line and establish the relationship between them.
  - (b) Explain how a section of a transmission line can be used as lumped circuit elements.
  - (c) A  $\lambda/8$  section of a lossless transmission line is terminated in a load  $(50 + j \cdot 50)\Omega$ . If the characteristic impedance of the line is  $50\Omega$ , determine (i) the input impedance of the line and (ii) the reflection coefficient at the load.

4 + 2 + 4

3. (a) What are the degenerate modes? Name different types of power losses in a rectangular waveguide. State the methods of exciting various modes in rectangular waveguides.

- (b) Derive the  $TE_{mn}$  field equations in circular waveguides. (1+1+3)+5
- 4. (a) What is an elemental antenna? Derive the expression for radiation resistance of the elemental antenna.
  - (b) Mention some of the special features of a microwave antenna.
  - (c) Write some of the advantages of a helical antenna and mention its uses.  $(1+4)+2+(1\frac{1}{2}+1\frac{1}{2})$
- 5. (a) Explain the term skip distance.
  - (b) Deduce the expression for the range of line of sight communication of space wave propagation if the transmitter and receiver heights are h, and h, respectively.
  - (c) An HF radio communication is to be established between two points on the earth's surface. The points are at a distance of 2000 km. The height of the ionospheric layer is 220 km and the critical frequency is 5 MHz. Find the maximum usable frequency.

    2+5+3

- 6. (a) Explain quasi-neutrality of plasma. How is it maintained?
  - (b) Describe with a diagram one of the laboratory methods used for producing plasma.
  - (c) What is the meaning of cut-off frequency of a plasma? (2+2)+4+2