2019

CHEMISTRY

[Honours]

PAPER - I

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Use separate answer scripts for Group—A and Group—B

GROUP - A

(Organic)

Subgroup - A(a)

Answer any one question:

 15×1

(Turn Over)

1.	(a) (i)	Draw the Fischer projection formula of (2S, 3R)-3-chlorobutan-2-ol and convert	
		it to Newman projection formula (any	
		conformer).	3

(ii) In a given solution a compound shows optical rotation of +300°. How will you prove that it is dextrorotatory?

(iii) Give an example where an optically active compound possess a C₂-axis.

(b) (i) Draw all the possible stereoisomers of the following molecule with R/S or E/Z nomenclature: 2+1

 $CH_3 - CH = CH - CH(OH)CH_3$

- (ii) Why [10] annulene is not considered as an aromatic compound? Explain.
- (c) (i) Among the following compounds which one is more acidic and why?

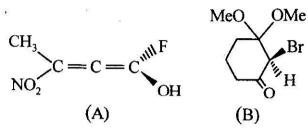
$$Me \longrightarrow Me \longrightarrow Me \longrightarrow Me \longrightarrow Me \longrightarrow Me$$

$$NO_2 \longrightarrow Me \longrightarrow NO_2$$

$$(A) \qquad (B)$$

(ii) Arrange the following molecules with their increasing order of dipole moments:

$$CH_3 - CH_2 - CI$$
, $CH_2 = CH - CI$, $HC = C - CI$


2. (a) (i) Rank the following in order of increasing basicity with reasons:

$$CH_3CO_2, CH_3CONH, NH_3 - CH_2 - CO_2$$

(ii) The following hydrocarbon has an unusually high dipole moment. Explain. 2

(b) (i) Assign R/S descriptors to the following compounds and also show the priority order of the groups:

- (ii) (R)-2-Benzoyl propanoic acid undergoes racemization when treated with NaOEt in. ethanol. Give an explanation.
- (c) Draw the following as indicated:
 - (i) (Z, E) isomers of benzildioxime.
 - (ii) anti-conformer of PhCH(Br) CH(Br)Ph.
 - (iii) Fischer projection formula of (2S, 3R)-2,3-dichloro propanoic acid.
- (d) Why lactic acid is optically active?

2

3

Subgroup - A(b)

Answer any two questions:

 10×2

- 3. (a) Draw all the π-M.O.S. of [6] annulene.

 Arrange them in order of increasing energy levels. Identify the HOMO and LUMO in the ground state.
 - (b) Enol content of acyclic 2,3-butanedione is slightly greater than normal ketone but in case of cyclobutane-1,2-dione is much higher. Explain.
 - (c) Explain whether the following compounds are resolvable or not?

(i)
$$\stackrel{\text{CH}_3}{\underset{\text{H}}{\text{Me}}} \stackrel{\text{Ph}}{\text{O}}$$
 (ii) $\stackrel{\text{H}}{\underset{\text{Me}}{\text{C}}} = C = C \stackrel{\text{H}}{\underset{\text{Me}}{\text{Me}}}$

(d) Draw the potential energy diagram of 2, 3-butanediol for rotation around C₂ - C₃ bond showing the conformers. Explain the relative stabilities of the conformers.

- 4. (a) Trans-4-butylcyclohexanol is oxidized four times more slowly than cis-isomer, when treated with CrO₃ at 25 °C. Give an explanation with mechanism.
 - (b) Draw the preferred conformation of the following compounds:
 - (i) trans-1-ethyl-2-methylcyclohexane
 - (ii) 1-t-butyl-1-methyl cyclohexane
 - (iii) Ethane-1,2-diol
 - (c) Write down the product(s) of the following reaction with mechanism (any two): 2×2

$$(i) \qquad \begin{array}{c} OH \\ -Me \\ OH \\ Me \end{array} ?$$

$$(ii) \qquad Me \qquad NaOEt \rightarrow ?$$

$$(iii) \times \longrightarrow OTS \xrightarrow{Br^{\Theta}} S$$

3

- (a) The pKa of cycloheptatrienyl anion is around 36 but pKa of trimethyl cyclopropenyl anion is 62. Explain.
 - (b) Give the IUPAC name of the following compounds:

(i)
$$CH_2-C-C-CH_3$$
 CH_2

(iii) CH(CO₂H)₃

(c) Predict the product(s) of the following reactions with proper explanation:

Ph

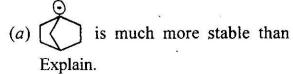
$$H^{W}$$
 OH $\xrightarrow{SOCl_2}$?
 Me $\xrightarrow{PCl_5}$?

UG/I/CHEM/H/I/19

(Turn Over)

13	U II		
(d)	Why $(Me_3\ddot{C} - C)_3$ CH	fails to show enol	
	form?		2

6. (a) Compare nucleophilicities of the following compounds with proper explanation:


CH₃CONH₂, NaNH₂, NH₃, NH₂-NH₂

- (b) How does land polarity differ from bond polarisability? Explain with examples.
- (c) How would you resolve (±) CH₃CH(OH)CH₂CH₃? 3
- (d) The rate of reaction of MeI with N₃[©] at 0°C becomes 10⁹ times faster if the soluent methanol (∈ = 33) is changed to DMSO (∈ = 46). Justify.

Subgroup -A(c)

7. Answer any five questions:

 2×5

- (b) α-chloro carbonyl compounds (R-CO-CH₂-Cl) is a very good substrate for S_N2 process. Explain.
- (c) CH₃-CH(OH)CH₂-SEt and CH₃-CH(SEt) -CH₂-OH give same product when treated with dry HCl. - Explain.
- (d) Draw the resonating structure for

(i)
$$\bigcup_{\oplus}^{OH} \overset{H}{\text{NO}_2}$$

(ii)
$$CH_3 - CH - OCH_3$$

(e) The azo compound (A) decomposes 20 times faster than compound (B). Explain.

$$\begin{array}{c|c}
CH_3 & CH_3 \\
-C-N = N - C - (CH_3)_3 C - N = N - C(CH_3)_3 \\
CH_3 & CH_3 \\
(A) & (B)
\end{array}$$

(f) Draw the stereo structures of (CH₃)₃C[⊕]. How does it differ from the corresponding carbanion?

- (g) Why dipole moment of cyclo pentandienone is less than cyclopentanone?
- (h) What is purple benzene?
- (i) Why the following radical is highly stabilized?

GROUP - B

(Inorganic)

Subgroup - B (a)

Answer any one question:

8.	(a)	Why electron can not stay in the nucleas?	2
	(b)	Draw the radial distribution curve for 3d and	
		2n orbital	2

(c) Calculate the effective nuclear change for 2+, Fe³⁺ ion.

,
(d) Explain the electronic configuration of following metals:
Ni, Pd, Pt
(e) State the uncertainty principle and explain the situations in which it becomes insignificants.
(f) The photoelectric work function of a metal is 2.489 eV. Calculate the threshold wavelength.
(g) Arrange the following compounds according to their acid strength:
BBr ₃ , BI ₃ , BF ₃ , BCl ₃
(a) Write a short note on "ion dipole interaction".
(b) Compare the IP of Cu, Ag and Au.
(c) Calculate the ionic radii of the Na ⁺ in NaF according to Pauling's method. The inter ionic distance is 1.08 Å.

	(d)	Draw the structures of ICl ₂ ⁺ and XeF ₆ using	
	()	VB theory.	2
	(e)	Explain the bond angles of CH ₂ F ₂ .	2
	(f)	Why nitrogen shows abnormal electron affinity?	2
	(g)	$CaO + SiO_2 = CaSiO_3$ Find out the acid and base according to LUX theory.	2
	(h)	Write the IUPAC name of the element having atomic number 105.	1
		Subgroup – B (b)	
		Answer any two questions: 10 ×	2
10.	(a)	Write the physical significance of wavefunction.	2
	(b)	Compare the solubility of $MgSO_4$ and $BaSO_4$ in water.	2
	(c)	Calculate the lattice energy of Th O ₂ using Born-Lande equation. The radii of the Th ⁴⁺	

and O2- ions are 108 pm and 126 pm. The

		Madelung constant for fluorite structure =	
		2.519 Born exponent for Th ⁴⁺ (6S ² 6P ⁶) may	5
		be taken only.	3
	(d)	Write the conjugate base of HS.	1
	(e)	What do you mean by the levelling effect of water?	2
1.	(a)	Compare the thermal stability of PH ₄ Cl, PH ₄ Br, PH ₄ I.	2
:	(b)	How the pH will change when 2 +	- 2
		(i) $CuSO_4$ is added to the aqueous solution of $(NH_4)_2SO_4$.	
		(ii) KHSO ₄ is added to sulfuric acid.	
	(c)	The first IP of Be is lower than B, but the 2nd IP is reverse. Explain.	2
	(d)	Write atleast one example for each of μ bond and S bond.	2

12.	(a)	All the Arrhenius acid are the Bronsted acid but all the Arrhenius base are not the Bronsted base. Explain.	2
	(b)	Compare the melting point of NaCl and Cu_2Cl_2 .	2
	(c)	The acidity of HF is lower than HCl. – Explain.	2
	(d)	Write one example where H ₂ SO ₄ acts as base.	2
	(e)	What are super acid and per acid?	2
13.	(a)	The bond angle of NH_3 is 107.3 whereas in PH_3 93.3°. Explain the difference in bond angle.	2
50	(b)	Why the solubility of AgCl is lower than AgF in water?	2
	(c)	The acidity of ClCH ₂ COOH is higher than CH ₃ COOH. Explain.	2
	(<i>d</i>)	Showing the structure, prove that NO ₂ is an odd electron molecule.	2

(e) MgO is highly stable, though the second electron affinity of oxygen is very high. Explain.

2

Subgroup - B (c)

14. Answer any five questions:

 2×5

- (a) Why the solubility of AgCl decreases after the addition of NaCl?
- (b) Which one will be strong base toward a proton NH₂ and PH₂.
- (c) Find out the ground state term symbol of Cr³⁺.
- (d) Why the Zr and Hf show almost similar chemical property.
- (e) O-nitrophenol has lower melting point than P-nitrophenol. Explain.
- (f) The bond angle of F_2O is $103 \cdot 2^\circ$ whereas in H_2O it is $104 \cdot 5^\circ Explain$.

- (g) HgCl₂ is colourless whereas HgI₂ is red colour Explain.
- (h) p-orbital is dumble shaped. Explain.