M.Sc. 1st Semester Examination, 2013

COMPUTER SCIENCE

PAPER — COS-104(M-1 & M-2)

Full Marks : 50

Time : 2 hours

The figures in the right hand margin indicate marks

MODULE—1

(Computer Graphics)

[Marks : 25]

Answer any two questions

1. (a) Stepwise illustrate the Generalised Bresenham's line drawing algorithm. The illustration should contain code along with precise narrative description.
(2)

(b) If \(X_{\text{start}} = 0, Y_{\text{start}} = 0, X_{\text{end}} = -4 \) and \(Y_{\text{end}} = -8 \) then find out using generalized Bresenham's algorithm the pixel locations approximating a line between the given points.

2. (a) Define frame buffer and look-up table. Also mention the working principle of look-up table.

(b) Write the difference between raster scan and random scan display.

3. (a) What is shear transformation? Mention the two standards of shear?

(b) Show that a 2D reflection through \(X\)-axis followed by a 2D reflection through the line \(y = -x \) is equivalent to pure rotation about the origin. (The rotation about origin by an angle of \(270^\circ \) is known as pure rotation).

4. (a) What is projection? Define the term "Projection plane" and "Centre of Projection".

PG/IS/COS-104/13 *(Continued)*
(3)

(b) Compare (any two):

(i) Shadow mask method and Beam penetration method.

(ii) Parallel projection and Perspective projection.

(iii) LCD and Plasma display system.

[Internal Assessment — 5 Marks]

MODULE—2

(Image Processing)

[Marks : 25]

Answer any four questions

1. (a) Define digital Image? How can you represent image by light intensity function. 1 + 2

(b) What is resolution? What do you mean by sampling? 1 + 1
2. Explain the Histogram equalization with suitable example.

3. (a) Write the $H(u, v)$ of any two high-pass filter and low-pass filter.

 (b) Write the effect of low-pass filter and high-pass filter when applied to the image.

4. Show that the Fourier transform the 2D sine function-

 $f(x, y) = A \sin (v_0 x + v_0 y)$ is the pair of conjugate impulses-

 $F(u, v) = -j \frac{A}{2} \left[\delta \left(u - \frac{u_0}{2\pi}, v - \frac{v_0}{2\pi} \right) - \delta \left(u + \frac{u_0}{2\pi}, v + \frac{v_0}{2\pi} \right) \right]$.

5. Two images $f(x, y)$ and $g(x, y)$, have histogram h_f and h_g. Give the conditions under which you can determine the histogram of

 (a) $f(x, y) + g(x, y)$.

 (Continued)
(b) \(f(x, y) - g(x, y) \).
(c) \(f(x, y) \times g(x, y) \).
(d) \(f(x, y) \div g(x, y) \).

—in each terms of \(hf \) and \(hg \). Explain how to obtain the histogram in each case. 5

6. Write short notes on any two:

(i) Edge detector
(ii) Neighbor of pixel
(iii) Adaptive thresholding
(iv) Bit-plane slicing.

[Internal Assessment — 5 Marks]