MCA 2nd Semester Examination, 2012 DESIGNAND ANALYSIS OF ALGORITHM

PAPER - CS/MCA/201

Full Marks: 100

Time: 3 hours

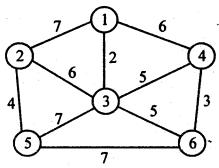
ur managa tat akindi sub

Answer any five questions

The figures in the right-hand margin indicate marks

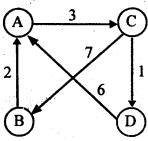
Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary


- 1. (a) What are the different characteristics of an algorithm?
 - (b) Define asymptotic Ω notation.
 - (c) Write an algorithm of Quick sort using Divide and Conquer method.

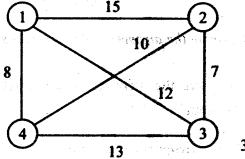
(d) Find out the time complexity of the following using recursion:

- 2. (a) Differentiate between Greedy method and Dynamic programming.
 - (b) What is the optimum solution of the following Knapsack problem using Greedy algorithm


$$P = (11, 22, 32, 35), W = (4, 11, 20, 15), C = 40, n = 4.$$

- (c) Write a greedy algorithm to the job sequencing with deadlines.
- (d) Calculate cost of the minimum cost spanning tree given below:

3+4+4+3


- 3. (a) What is heap property? Write an algorithm for heap sort and find the time complexity of it.
 - (b) Describe sorting technique using partial order. (2+5+3)+4
- 4. (a) Explain All-pair shortest-paths problem.
 - (b) Write an algorithm of All pair shortest path using dynamic programming design technique.
 - (c) Find out all pair shortest path for the following graph:

3+5+6

- 5. (a) Define *n*-queen problem. What are the exclusion criteria of *n*-queen problem?
 - (b) Solve the 4-queens problem using backtracking.
 - (c) Write an algorithm of 8-queens problem using backtracking. 4+4+6

- 6. (a) What is graph coloring problem? Write algorithm of graph coloring problem. Find the time complexity of that algorithm.
 - (b) Write an algorithm for job sequencing with deadlines. (2+5+3)+4
- 7. (a) Write the Tower of Hanoi algorithm using recursion.
 - (b) Explain how 15 puzzle problem can be solved using Branch and Bound design technique.
 - (c) A postal van has to travel few post offices as described in the following graph. Find out route, the van should follow to achieve minimum travel starting from node 1.

13

[Internal Assessment: 30 Marks]

MCA/IIS/201/12 MV-100