2011

M.Sc.

2nd Semester Examination THEORY OF COMPUTATION & COMPILER

PAPER-CS-202

Full Marks: 40

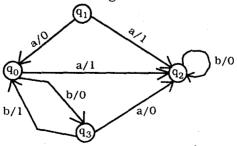
Time: 2 Hours

The questions are of equal value.

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.


MODULE-1

(FINITE AUTOMATA)

(Marks: 20)

Answer any two questions.

- 1. (a) What are mealy and Moore machine?
 - (b) Convert the following Mealy machine into equivalent Moore machine of fig. 1

- 2. (a) Explain pumping Lemma for regular set. 5
 - (b) Show that 5
- $L = \left\{0^{i}1^{i} / i \ge 1\right\} \text{ is not regular using pumping Lemma.}$
- 3. (a) What is ambiguity? Show that $S \rightarrow aS/Sa/a$ is an ambiguous grammar. 5
 - (b) Convert the given gr. in CNF

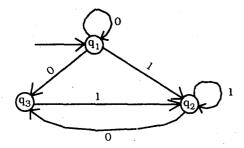
 $S \longrightarrow ABa$

 $A \longrightarrow aab$

 $B \longrightarrow Ac$

4. (a) Consider the production:

 $BC \longrightarrow CB$


Is this production type 1? Justify.

_

5

(b) State and prove Arden's theorem.

- 1+2
- (c) Construct a R.E. corresponding to the state diagramme given, below:

(d)	Construct	a	deterministic	finite	automator
	equivalent t	o ti	he grammar:		

 $S \longrightarrow aS/bS/aA$

 $A \longrightarrow bB$

 $B \longrightarrow aC$

 $C \longrightarrow V$

5.

(a) Construct a PDA accepting the set of all string over {a, b} with equal no. of a's and b's.

(b) Find a reduced grammar equivalent to the grammar G whose productions are:

 $S \longrightarrow AB/CA$

 $B \longrightarrow BC/AB$

 $A \longrightarrow a$

 $C \longrightarrow aB/b$

(c) Find a derivation tree of a*b + a*b given that a*b + a*b is in L(G) where G is given by:

 $S \longrightarrow S + S/S * S$

 $B \longrightarrow a/b$.

2

3

2

MODULE-2

(COMPILER DESIGN)

(Marks: 20)

Answer any two questions.

1. (a) Generate three address code for the following program:

While (A < C and B > D) do if A = 1 then C = C+1 else

While A < = D do

A = A + 3

5

(b)	Construct DAG for the basic block whose code is	given
	below:	-

$$t1 = b + c$$

 $t2 = d * e$
 $t3 = t2 * t1$

t3 = t3 * f

X = t1 - t3.

5

2. What is an LL(1) grammar? Fill in the entries in an LL(1). Passing table for the following grammar 2

 $S \longrightarrow A!$

 $A \longrightarrow cBdB/!B$

 $B \longrightarrow aB/b/dA$

Illustrate how the table can be used to control a nonrecursive parser by parsing the sentence cabdd!ab!

3. (a) Consider the following context free grammar

 $G = (\{S, A, B\}, S, \{a, b\}, P)$ where P is

 $S \longrightarrow Aa$

 $S \longrightarrow bAc$

 $S \longrightarrow Bc$

 $S \longrightarrow bBa$

 $A \longrightarrow d$

 $B \longrightarrow d$

Show that the grammar is LR(1) and not LALR(1). 10

4. Write short notes on (any two):

5×2

- (a) Synthesised and inheretated atrribute.
- (b) Construction of DFA from regular expression.
- (c) LEX.
- (d) Type checking.