2019

MSc

2nd Semester Examination

ELECTRONICS

PAPER - ELC-206(Pr)

Full Marks: 50

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their

Own words as far as practicable.

Illustrate the answers wherever necessary.

ANSWER ANY ONE QUESTION SELECTING IT BY A LUCKY DRAW

- Determine the carrier concentration and mobility of a semi conductor sample using Hall measurement.
- Determine the storage delay time of a P N junction diode (IN 4007) using CRO.Record your data from 300hz to 10khz. Plot normalized value of storage delay time (t_{st/f}) with frequency.
- 3. Determine barrier height of a schottky diode using activation energy method. Extend your work to determine electronically active area of the device.
- Determine the barrier height of a schottky barrier diode using current voltage Measurement method. Given A* = 120A/cm²/k².
- Determine the band gap of a semi conductor using temperature sensitive junction voltage measurement of a P – N junction diode.
- Study the C V characteristics of a P N junction diode.
 Plot y_{e'-y}, what information you can get from this plot.
- Study the I V characteristics of a P N junction diode. Record your data calculate
 cut in voltage, dynamic resistance from your graph. Plot in I vs V and determine
 reverse saturation current and ideality factor from your plot.
- 8. Study the $l_d V_d$ characteristics of a JEET for various gate voltages. Draw the $l_d - V_d$ curve and determine r_d , μ and g_m .
- 9. Study the $\sqrt{I_d}$ V_g characteristics of a JFET for different temperature. In each case deter mine threshold voltage of the device from your graph. Plot V_{th} T.

10. The drain current of a MESFET having arbitrary doping distribution is given by

$$I_{D} = \frac{2z\mu}{\epsilon_{x} L} \int_{\mathcal{H}}^{\mu_{2}} \left\{ \phi(a) - \phi(u) \right\} h\rho(h) dh$$

Where
$$\rho(y) = N_O e^{-\alpha y}$$
 and $\phi(Y) = \int_0^x \rho(Y) dy$

The values of z, μ , ι , N_o will be provided

Solve $1_{\,\mathrm{D}\ \mathrm{for\ different}}\ V_{d}\ \ \mathrm{using\ MATLAB}.$