M.Sc. 3rd Semester Examination, 2019

ELECTRONICS

(VLSI Engineering)

PAPER -ELC-303

Full Marks: 50

Time: 2 hours

Answer all questions

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any four questions:

 2×4

- (a) What is Moor's law?
- (b) Compare the transform characteristics of n-channel and p-channel MOSFETs.

- (c) Why do we scale MOS transistor?
- (d) Mention basic steps in IC fabrication.
- (e) What are the precautions to be taken for IC packaging?
- (f) What do you mean by standard cell approach?
- (g) Draw a CMOS-inverter.
- (h) Explain the principle of CMOS latch-up.
- 2. Answer any four questions: 4×4
 - (a) Draw the flow diagram of typical VLSI design flow and explain. 2+2
 - (b) A microprocessor was fabricated in a 0·25 μm technology and was able to operate at 100 MHz, consuming 10 W using 2·5 V power supply.
 - (i) Using fixed voltage scaling, what will be the speed and power consumption of the same processor be if scaled to 0·1 μm technology?

- (ii) If the supply voltage on the 0·1 μm part were scaled to 1·0 V, what will be the power consumption and speed be?
- (c) Describe with a diagram the various charges associated with thermally grown oxidized silicon.
- (d) What are the factors to be taken care for metallization in VLSI? Estimate the intrinsic RC value of two parallel Al wires 0.5 μm × 0.5 μm in cross-section, 1 mm in length and separated by a polymide (k = 2.7) dielectric layer that is 0.5 μm thick. The resistivity of AL is 2.7 μΩ-cm.
- (e) Draw the stick diagram of the following circuit: 2+2

(f) How design a SR flip flop using semicustom methodology.

4

	Explain	the	CMOS	inverter	transfer
	character	istic	highlight	ting the re	egions of
	operation of the MOS transistors.				

(h) Describe the CMOS logic design.

3. Answer any two questions:

 8×2

- (a) (i) Draw the different capacitors involved in a MOS transistor.
 - (ii) Draw and explain the MOS C-V characteristic for high and low frequency region. 3+5
- (b) (i) What is the bird's beak structure in the oxidation process? How is it prevented?
 - (ii) If a silicon oxide of thickness x is grown in thermal oxidation, what is the thickness of silicon being consumed? The molecular weight of silicon is 28.9 g mol⁻¹, and the density of Si is 2.33 g cm⁻³. The corresponding values of SiO₂ are 60.08 g mol⁻¹ and 2.21 g cm⁻³.

(2+2)+4

(c) Describe with diagrams the steps followed in the fabrication of an *n*-channel enhancement mode MOSFET.

8

8

(d) Draw the CMOS circuit for the logic diagram shown below and find F.

[Internal Assessment: 10 Marks]