2019

MSc

2nd Semester Examination

ELECTRONICS

PAPER - ELC-201

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their

own words as far as practicable.

Illustrate the answers wherever necessary.

- 1. Answer any 04 questions out of 08 questions carrying 02 marks of each. (2×4)
- i) What is aliasing effect?
- Explain the time shifting property of discrete time Fourier Transform (DTFT).
- iii) What are the properties of frequency response $H(e^{i\omega})$ of Linear Time Invariant (LTI) system?
- iv) What is causality condition for an LTI system?
- v) What is the main advantage of direct form II realization when compared to direct form I realization for II R systems?
- vi) Find the even and odd part of $x[n] = 3e^{j\frac{\pi}{5}n}$
- vi) If x[n] = [-1,3,7,2,8,0, -3,5,2,1,3,2,6,3,8,3,] where x[n] is a left hand signal, find X[3n-2].
- viii) What is half-wave symmetry? Give suitable example.

- 2. Answer any 04 questions out of 08 questions carrying 04 marks of each. 4×4=16
 - State the difference between overlap save method and overlap add method for filtering the long duration sequences.

4

ii) Given the sequences $x_1(n) = \{1,2,3,4\}; x_2(n) = \{1,1,2,2\}$. Find $X_3(n)$ such that $X_3(k) = X_1(K) X_2(K)$.

А

4

- iii) Test the stability of the system whose impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n)$.
- iv) Find the output y(n) of a filter whose impulse response is $h(n)=\{1,1,1\}$ and input Signal $x(n)=\{3,-1,0,1,3,2,0,1,2,1\}$ using overlap add method.
- v) Check whether the system given by y(n) = x(-n+2) is linear or not.
- vi) Find the inverse Fourier transform of $x(j\omega) = \begin{cases} 1 & -W \le ω \le W \\ 0 & |ω| ≥ 0 \end{cases}$
- vii) For the sequence $x(n) = \{1, 1, 0, 0, -1, -1, 0, 0\}$, determine the 8 point DFT.
- viii) Compute the circular convolution of the following two sequence $x_1(n) = \{2, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$

- 3. Answer any 02 questions out of 04 questions carrying 08 marks of each.
 - i) (a) What is zero padding? What are its uses?
 - (b) What is the input signal X(n) that will generate the output sequence $y(n) = \{1,5,10,11,8,4,1\} \text{ for a system with impulse response}$ $h(n) = \{1,2,1\}$

(2+1)+5

ii) (a) Verify Parseval's theorem for the signal

$$g(t) = e^{-a(t)}u(t), (a > 0)$$

- (b) Estimate the essential bandwidth ω (in rad/5) of the signal $\mathcal{C}^{-at}u(t)$ if the essential band is required to obtain 95% of the signal energy.
- iii) a) Why the concept of analog filter is essential to design digital filter?
 - b) What is up sampling?
 - c) Justify the statement 'all signals can be represented by shifted delta function'?
 - d) What is bit reversal?

2+2+2+2

- iv) a) What is the significance of 'infinite' term in connection of IIR (Infinite Impulse Response) filter?
 - b) Why do we prefer to use 'Direct Form II' structure over 'Direct Form I''?

 Justify your answer with suitable IIR filter?
 - c) Draw a second order 'Transposed Direct Form I' IIR filter.
 - d) For simplicity higher order systems are decomposed into lower order systems (cascade and/or parallel form), more precisely into 'second order' system, but we do not prefer to use 'first order system whenever possible. Why?

2+2+2+2

(Internal Assessment : 10 Marks)