M.Sc. 2nd Semester Examination, 2014

CHEMISTRY

PAPER - CEM - 201

Full Marks: 40

Time: 2 hours

Answer five questions taking one from each Group.

The figures in the right-hand margin indicate marks

GROUP-A

- 1. Find out the eigenfunction and \hat{L}_z and show that its eigenvalues are integral for orbital motion. 4+4
- 2. Derive the lowest eigenvalue and lowest eigenfunction of linear Harmonic Oscillator by operator technique.

 4 + 4

GROUP-B

Answer any one of the following:

- 3. (a) Define 'phase space' and 'thermodynamic probability'.
 - (b) What are 'Fermions'?
 - (c) Calculate the rotational partition function for CO at 25°C having characteristic rotational temperature 2.77 K. $\left\{ \left(1\frac{1}{2} + 1\frac{1}{2}\right) + 2 + 3 \right\}$

Or

Assuming the expression for the thermodynamic probability of distribution of n distinguishable particles in i-different states, the ith state being g_i -fold degenerate, obtain the Boltzmann distribution Law in terms of the energy multiplier β and the molecular partition function.

8

4. (a) Obtain an expression for the translational contribution to the molar energy of a perfect monoatomic gas molecule.

(b) What is the significance of molecular partition function? 6+2

GROUP-C

- 5. (a) Define Oscillating reaction with a suitable example.
 - (b) The presence of 4.8×10^{-6} mol dm⁻³ of a competitive inhibitor decreases the initial rate of 1.11×10^{-4} mol dm⁻³s⁻¹ by a factor of 3.6. If the maximum velocity of the reaction and the substrate concentration are 0.64 mol dm⁻³s⁻¹ and 4.32×10^{-6} mol dm⁻³ respectively, find out the equilibrium constant for the binding reaction between the enzyme and the inhibitor. Given $K_m = 25 \times 10^{-3}$ mol dm⁻³.
- **6.** (a) What is redox reaction?
 - (b) How does a redox reaction occur by inner sphere mechanism?

(c) The equilibrium constant for the reaction

$$D^+(aq) + OD^-(aq) \xrightarrow{K_1} D_2O(l)$$

at 25°C is $K_c = 4.08 \times 10^{16} \, \text{mol}^{-1} \text{dm}^3$. The rate constant K_{-1} is independently found to be $2.52 \times 10^{-6} \text{s}^{-1}$. What do you predict for the observed relaxation time for a temperature – jump experiment to a final temperature of 25°C? The density of D_2O is $\rho = 1.104 \, \text{gcm}^{-3}$ at 25°C. 1 + 3 + 4

GROUP-D

- 7. (a) How do you obtain the unit of diffusion co-efficient from Fick's first law?
 - (b) Derive Einstein's relation $\bar{x}^2 = 2Dt$, where the terms have their usual significances.
 - (c) Derive the electrophoretic component of drift velocity of ion. 2+4+2

- **8.** (a) Derive an expression of concentration overpotential involving limiting current density.
 - (b) Prove Heynovsky's equation,

$$E = E_{1/2} + \frac{RT}{nF} \ln \frac{i_d - i}{i},$$

where the terms bear usual significances.

+ 4

GROUP-E

- (a) State and explain the selection rule for pure rotational Raman transition of diatomic molecule.
 - (b) What is stimulated Raman Scattering? Use energy level diagram to explain the appearance of stimulated stokes and Anti-stokes vibrational Raman Scattering.
- 10. (a) Write down the MO configuration of N₂ and O₂ and also deduce their MO term symbols.

- (b) State the selection rule for electric dipole transitions between the electronic states of linear molecule.
- (c) Write down vector the diagrams of spin and spin wave functions for molecular triplet electronic state. 4+2+2