M.Sc. 1st Semester Examination, 2014

CHEMISTRY

(Inorganic)

PAPER - CEM-103

Full Marks: 40

Time: 2 hours

Answer any five questions taking at least two from each Group

The figures in the right hand margin indicate marks

GROUP -A

1. (a) Verify that the scalar product of vectors A and B in n-dimensional space is equal to the sum of the products of the lengths of projections of the vectors in n-orthogonal axes with no cross terms.

(Turn Over)

3

	(0)	following molecules and identify the other elements of symmetry generated by this axis (i) Ferrocene (eclipsed) (ii) [CoCl ₄] ²⁻ .	2
	(c)	A borane molecule has its styx number 1004. Predict the formula of the molecule and draw the possible structure.	2
	(<i>d</i>)	Identify Closo/Nido/Arachno/Hypo boranes $[B_5H_9]^{2-}$, B_8H_{16} .	1
2.	(a)	What do you mean by subgroup of a group? Find out the subgroups present in the group D_{4h} .	3
	(b)	Construct the "group multiplication table" for H ₂ O molecule. Determine the classes present in this molecule.	2
	(c)	Calculate the styx number of $[B_5H_9]^{2-}$ ion and establish its most probable structure.	3

3.	(a)	Prove that if P is conjugate with Q and R , then Q and R are conjugate with each other.	2
S	(b)	Identify the point group for each of the following molecules/ions:	2
ç		(ii) XeOF ₄	
		(iii) BF_4^- (iv) $[Re_2Cl_8]^{2-}$.	
	(c)	Show that no two classes of a group can share a common element.	2
	(d)	Complete the following reactions: (i) $Ph_3PAuCl + C_2RLiB_{10}H_{10} \longrightarrow$ (ii) $[C_3B_9H_{11}]^{2-} + BrMn(CO)_5 \longrightarrow$	2
die.	Š 1 1,20− 3.	(iii) $2 [C_2B_9H_{11}]^2 + FeCl_2 \longrightarrow$ (iv) $B_5H_9 + C_2H_2 \xrightarrow{490^{\circ}C}$	
4.	(a)	"In $[Zn(H_2O)_6]^{2^+}$ the pK _a is around 9.0, however, in carbonic anhydrase enzyme i.e. (imidazole), $Zn - OH_2$ the pK _a is around 7.0."—Explain.	2

(b) What happens when OsO₄ is treated with

		of the complex and mention the oxidation state of the central metal ion.	2
	(c)	What are the differences between first genera- tion and second generation BNCT agents?	2
	(d)	Using "Great Orthogonality Theorem" prove that the sum of the squares of the characters in any irreducible representation equals to the order of the group.	2
		GROUP -B	
5.	(a)	What do you mean by active and passive transport?	2
	(b)	What is antiporter enzyme? Mention one antiporter enzyme and cite its function.	2
	(c)	Discuss the 1D electronic conduction property of K ₂ [Pt(CN) ₄]·3H ₂ O complex.	2

	(d)	What is Wolfarm's red salt?	1
	(e)	How will you synthesize ruthanate and per-ruthanate from ruthenium tetroxide? What are the oxidation state of 'Ru'?	1
6.	(a)	Discuss the recycling of iron in red blood cells.	2
	(b)	Draw the active site structure of the enzyme carboxypeptidase. Schematically present and discuss the functional mechanism of carboxypeptidase enzyme. What is the role of $Zn(II)$ metal ion in this enzyme? $1+3+$	- 1
4 - e ²	• '	How ruthenium dinitrogen complex is synthesized?	1
7.	(a)	$[Cr(H_2O)_6]^{3+}$ shows three absorption bands at 17400, 24600 and 37900 cm ⁻¹ . Assign three bands and calculate Dq .	2
	(b)	Schematically present the coordination sphere around iron (III) in transferrin.	. 1

	operation.	3
(d)	Show that when a C_4 axis and a plane containing this axis present, then there must be a second plane which also contain this C_4 axis and at an angle of 45° to the first plane.	2
(a)	d^7 -high spin octahedral and tetrahedral complexes contain same number of unpaired electrons, but, the magnetic moment of octahedral complex is greater than tetrahedral complex.—Explain.	3
(b)	Draw the molecular orbital energy level diagram of [Co(Cl) ₄] ²⁻ , indicating symmetric of atomic and molecular orbitals.	3
(c)	How can you explain metal-ligand orbital overlap with the help of ESR spectroscopy?	2

8.