M.Sc. 4th Semester Examination, 2014

CHEMISTRY

PAPER - CEM - 404

Full Marks: 40

Time: 2 hours

Answer any four questions

The figures in the right-hand margin indicate marks

1.	(a)	Describe the manufacture of pale crepe rubber from natural rubber latex.	4
	(b)	What happens to the morphology of raw rubber when it is stretched to at least 700 % elongation?	2
	(c)	Explain the term 'racking' as applicable to raw natural rubber.	2

(d) State the Gough-Joule effect of natural rubber. 2

2.	(a)	Explain the function of processing aids in the compounding of rubber. Give examples of processing aids. 2 +	1
	(b)	What do you mean by reinforcing fillers? Give examples of reinforcing fillers and extenders. $1+1+$	· 1
	(c)	Write down the purpose of vulcanisation of rubber. How the saturated rubbers are vulcanised? 2 +	2
3.	(a)	Mention the important properties of butyl rubber and state the special fields of application of butyl rubber based on These properties.	2
	(b)	Write a short note on curing of neoprene rubber.	4
	(c)	State the reasons for the use of neoprene rubber as adhesives.	2
4.	(a)	Describe the 'Philips process' for the manufacture of high density polyethylene.	5
	(b)	Classify polyethylene based on density.	2

(Continued)

(c) How does the density of polyethylene char	ige
with crystallinity? State the properties	of
high density crystalline polyethylene.	1 + 2

- 5. (a) Why are polycarbonates named so?
 - (b) Mention the names of raw materials used for the synthesis of polycarbonates. Show with suitable chemical reactions the synthesis of a polycarbonate from the raw materials. 1 + 3
 - (c) Mention the important properties of polycarbonates.
 - (d) Define the term 'epoxy equivalent weight'
 (EEW). How is it related to the epoxide content of the epoxy resin? State the properties of epoxide resin that depend on the bisphenol A moiety of the epoxy resin.
- 6. (a) Name the raw materials used for the synthesis of nylon 66. Why is it named so?

 Describe with a neat flow diagram the manufacturing process of nylon 66 from its raw materials.

 1+1+5

- (b) How chlorosulphonated polyethylene (hypalon) is produced from low density polyethylene (LDPE)? Mention the main applications of hypalon. 2+1
- 7. Write short notes on any four of the following:
 - (i) Compression moulding

 $2\frac{1}{2}\times4$

- (ii) Properties of stereoregular polyethylene
- (iii) Viscose rayon
- (iv) Properties and uses of polystyrene
- (v) Synthesis of EPDM
- (vi) Accelerators and accelerator activators.

(Inorganic Special)

(Environmental Chemistry)

Answer any four questions

1. (a) Discuss the operating principle of a cyclone separator.

	(b)	Derive an expression to calculate the collection efficiency of an ESP as function of gas flow rate.	3
	(c)	Write the principle of reverse osmosis.	2
2.	(a)	Describe the method for the estimation of total hardness (Ca and Mg) in water sample.	5
	(b)	Write critical notes on sampling of gases and vapours.	5
3.	(a)	How atmospheric particulate matter is analysed using X-ray fluorescence spectrophotometry? Explain.	4
	(b)	How do you draw samples of automative emissions using Impingers and Electrostatic samplers? $2\frac{1}{2} + 2$	$\frac{1}{2}$
	(c)	Write down the principle involving analysation of Mercury by AAS.	1
4.	(a)	(i) Define B.O.D.	
		(ii) Write down the expression for B.O.D. in mg/l.	

PG/IVS/CEM-404/14

(Turn Over)

- (iii)Discuss the complete B.O.D. curve. 1+1+2
- (b) The B.O.D₅ of a waste water is determined to be 150 mg/l at 20°C. The K value is 0.23 day⁻¹. What would be the B.O.D₈ if the test were run at 15°C.
 - (i) Determine ultimate B.O.D. (L₀)
 - (ii) Determine Temperature correction for K value for 15°C, where $\theta = 1.047$.
 - (iii) Determine B.O.D. at 8 days, Y_8 . 2+2+2
- 5. (a) Describe the method for the estimation of the following water quality parameters in water samples:

 3+3
 - (i) C.O.D.
 - (ii) Nitrite (NO₂⁻)
 - (b) Chemiluminescence is the standard method for monitoring of NO_x. Explain. 4
- 6. (a) Describe the working principle of the Neutron Activation Analysis.

	(0)	spectrometer. In what ways is it superior to IR spectrophotometry? 3+3
	(c)	Write down the differences between GSC and GLC.
7.	(a)	Explain the principle of Ion Exchange chromatography.
	(b)	How do the sensitivities of Atomic Absorption Spectrophotometry and Inductively coupled plasma Emission spectrometry compared? 2
	(c)	Define Anode Stripping Voltammetry and Cathode stripping Voltammetry and mention the steps involved in these two processes. $1\frac{1}{2} + 1\frac{1}{2}$
	(d)	Write the Illkovic equation for limiting diffusion current in polarography. Explain the terms involved in the equation.