M.Sc 2nd Semester Examination, 2011

CHEMISTRY

(Inorganic)

PAPER -- CEM - 203

Full Marks: 40

Time: 2 hours

Answer any four questions

The figures in the right-hand margin indicate marks

1. (a) Arrange the following complexes in the order of ethylene C—C bond length with proper explanation:

φ] + φ] 2 + φ]

(Turn Over)

(b) Complete the following reaction:

Mo (CO)₆ +
$$\frac{\text{Octane}}{\text{Reflux}}$$

(ii) $\text{ZrCl}_4 + \text{C}_7\text{H}_8$ $\frac{\text{Na-Hg}}{\text{Na-Hg}}$

(iii) $\frac{\text{OCH}_3}{\text{Fe}}$ $\frac{\text{CN}^-}{\text{(CO)}_3}$

(iv) $\frac{\text{Fe}}{\text{CO}}$ $\frac{\text{CH}(\text{COOMe})_2}{\text{CO}}$

PG/IIS/CHE - 203/11 (Continued)

5

(c) Rationalise the observation "On forming [IrBr (CO) $(\eta^2 - C_2 (CN)_4) (PPh_3)_2$], the C—C bond in $C_2 (CN)_4$ lengthens from 135 to 151 pm.

2. (a) How will you synthesize

$$(CO)_5 Cr = C R$$

starting from $Cr (CO)_6$.

(b) Consider the following structures and explain why the C—C bond length is longer in 'II' compared to 'I'?

2

$$(CO)_{\varsigma}Cr \xrightarrow{2\cdot04 \text{ Å}} (CO)_{\varsigma}Cr \xrightarrow{2\cdot13 \text{ Å}} (CO)_{\varsigma}Cr \xrightarrow{2\cdot13 \text{ Å}} (CH_{3})$$

$$(II) (II) (CH_{3})$$

(c) Predict the product of the following reactions: 4

Ph Ph Ph
$$\stackrel{\text{Ph}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}{\stackrel{\text{Pe}(CO)_5}}}}}$$
PG/IIS/CHE - 203/11 Ph Ph $\stackrel{\text{Ph}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}}{\stackrel{\text{Ph}}}{\stackrel{\text{Ph}}}$

(ii) Bu¹CH₂TaCl₄
$$\xrightarrow{\text{Na-Hg}}$$

(iii)
$$\longrightarrow$$
 Pt (PPh₃)₃ $\xrightarrow{\text{Na-Hg}}$

(iv)
$$Co_2(CO)_8 + Ph C \equiv CPh$$

$$NiCl_2 + + AIR_3 \longrightarrow [A] \xrightarrow{Cyclooctadiene} [B]$$

(a) Show that the p_x and p_y orbitals, as a pair, provide a basis for the E representation of $C_{3\nu}$ point group. Given below the character table for $C_{3\nu}$ point group.

C_{3v}	E	2 <i>C</i> ₃	$3\sigma_v$		
A_1	1	1	1	Z	$x^2 + y^2, z^2$
A_2	1	1	-1	R_z	
E	2	-1	0	$(x,y)(R_x,R_y)$	$(x^2-y^2,xy)(xz,yz)$

(b) Investigate whether an A_1 electron in H_2O can make an electric dipole transition to a B_1 orbital. What polarized radiation will emitted (or absorbed) during this transition? Given below the character table for $C_{2\nu}$ point group.

C2 v	E	C_2	$\sigma_{v}(x)$	z) o _v '(yz)	,	
A_1	1	1	1	1	Z	x^2, y^2, z^2
A2	1	1	-1	-1	R_z	xy
B_1	1	-1	1	-1	x, R_y	XZ
B_2	1	-1	-1	1	y, R_x	yz

- (c) Explain why the polarization effect is not observed in cubic or higher symmetry molecule. 2
- 4. Using molecular orbital theory derive the expression for the energy of symmetric and antisymmetric states of H₂⁺ ion. Deduce the expression for symmetric function and antisymmetric function of H₂⁺ ion. Show the electron distribution of symmetric and antisymmetric states of this ion. (Derivation of secular determinant is not required).

- 5. (a) Verify that the representation of a direct product, AB, will contain the totally symmetric representation only if the irreducible A = the irreducible B.
 - (b) Write short note on "spectral transition probabilities."
 - (c) He₂⁺ and H₂⁺ both have same bond order but differ in their stability. Explain.
- 6. (a) What do you mean by fluxionality? Why NMR spectroscopy is used to detect fluxional behaviour. Explain. 1+2
 - (b) What happens when Na[Mn (CO)₅) is reacted with 2

(c) Draw the possible co-ordination modes of hydride ligand.

- (d) Complete the following reaction.
 - (i) NiBr₂ + 2C₃H₅ MgBr $\xrightarrow{\text{Et}_2\text{O}}$ 10°C

(ii)
$$Na_2[PdCl_4] + \underbrace{Na_2CO_3}$$

- (e) What do you mean by agostic interaction?
- 7. (a) Write down the instrumental set-up of an atomic absorption spectrophotometer.
 - (b) Discuss "hollow cathode lamp".
 - (c) Write down the relationship between excitation spectra and fluorescence spectra.
 - (d) What do you mean by "Irving Williams Order"?

2