M.Sc. 3rd Semester Examination, 2011 ### **CHEMISTRY** PAPER-CEM-301. Full Marks: 40 Time: 2 hours The figures in the right-hand margin indicate marks (Organic Special) Answer any five questions taking at least two from each Group #### GROUP - A (a) Show various transitions between excited and ground states of organic molecules in a Jablouski diagram and identify their importance in photochemical reactions. (b) Predict the product/s of the following reactions with mechanism (attempt *one* only): 2×1 (ii) Ph $$C = 0$$ $hv/$ trans-butene/ cis-butene 2. What is Paterno-Büchi addition reaction? Explain the mechanism of the reaction with suitable example and also predict the products of the following reactions with mechanism (attempt any two): (i) $$(CH_3)_2 CO + CH = CH$$ CN CN (ii) (a) $$Ph$$ Ph + hv/C_6H_6 $$(b) \underset{\text{Ph}}{\stackrel{\text{O}}{\longrightarrow}} H + \underbrace{\begin{pmatrix} C_4 H_9 \\ C_1 H_2 \end{pmatrix}} \xrightarrow{hv} ? 1$$ PG/IIIS/CHE-301/11 Continued) (iii) $$COOCH_3$$ + $Ph-C \equiv C-Ph$ hv COOCH₃ 3. Predict the product of the following reactions with plausible mechanism: 3+2+3 (i) $$+$$ $\frac{hv}{-10^{\circ}C}$ (ii) $$\stackrel{O}{\longrightarrow}$$? Or $\stackrel{h\nu/\text{CH}_3\text{OH}}{\longrightarrow}$? (iii) $$\frac{hv}{\text{Benze}}$$? - 4. (a) Mischler's ketone does not undergoes photoreduction under the same condition at which benzophone absorbs. Explain. - (b) Predict the product/s with mechanism (attempt any two): (ii) $$COOEt + CH_3OH \xrightarrow{hv}$$ (iii) $$CH-Ph$$ $||$ $hv \rightarrow ?$ CH-Ph cis trans stilbene 5. What is (i, g) sigmatrofic shifts? Explain with examples end hence predict the product/s of the following reactions with mechanism (attempt any three): $2 + 3 \times 2$ ### GROUP - B 6. (a) How can you effect the following conversions? Explain in terms of steric and stereoelectronic effects involved. Indicate and name the natural product. $$R = n - C_{1} \cdot H_{e}$$ PG/IIIS/CHE-301/11 - (b) How can you convert the more stable diastereomer of ethyl-4-t-butyleyclohexanone completely into the less stable one? Explain the reactions involved. - 7. Complete the following reaction sequence explaining in terms of stereoelectronic and steric effects, wherever necessary: 1-Benzoylcyclohexene $$\xrightarrow{\text{PhMgBr}} \underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\text{Ac}_2\text{O}} ?$$ $$\underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\text{H}_3\text{O}^{\oplus}} \underline{\underline{C}} \xrightarrow{\text{Br}_2} ? \underline{\underline{C}} \xrightarrow{\text{NaOEt}} \underline{\underline{D}} \xrightarrow{\text{RoOH}} ?$$ $$\underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\text{NaOEt}} ? \underline{\underline{C}} \xrightarrow{\text{NaOEt}} ?$$ $$\underline{\underline{A}} + \underline{\underline{B}} \underline{\underline{A}} \xrightarrow{\underline{A}} ?$$ $$\underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\underline{A}} ?$$ $$\underline{\underline{A}} + \underline{\underline{A}} \xrightarrow{\underline{A}} ?$$ $$\underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\underline{A}} ?$$ $$\underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\underline{A}} ?$$ $$\underline{\underline{A}} + \underline{\underline{A}} $$\underline{\underline{A}}$$ 8. (a) Deduce the Eliel equation showing the relationship between equilibrium constant and different specific rate constants of a mobile system. How can you derive Winstein-Holness equation from the first principle and also from the Eliel equation? | (b) | Comment on the optical activity of cis-decalin and | |-----|--| | | its 1- or 2- substituted derivative | - 9. (a) Delineate the symmetry elements of *cis*-decalin and *trans*-decalin and write their point groups. - (b) Write down the conformers of both enantiomers of cis-1-decalone-, indicate the torsion angle signs at the ring junction (both sides) of each and hence label each conformer of each enantiomer as in steroidal or non-steroidal form. - 10. (a) cis-2-Decalone upon bromination with bromine in acetic acid forms predominantly the axial-1bromo derivative. Explain the fact in terms of mechanism, steric and stereoelectronic factors involved. - (b) (S)-Methylethynyl-t-butylcarbinol when treated with SOCl₂ in dry ether in presence or absence of pyridine produces the same product, though following different mechanisms. Show the mechanisms involving the π-orbitals, and name the product specifying its absolute configuration. ## (Inorganic Special) ## Answer any four questions 1. (a) With the help of group theory determine the symmetries of the group of orbitals of F atoms which are effective for σ -bond formation in PF₅ molecule. Construct a qualitative σ -bonding molecular orbital energy level diagram for PF₅ molecule. From this molecular orbital energy level diagram comment about the π -acid nature of PF₅ molecule. (Given below the character table for D_{3h} point group). 8 | D_{3h} | E | $2C_3$ | $3C_2$ | σ_{h} | 2S ₃ | $2\sigma_{\nu}$ | | | |----------|---|--------|--------|--------------|-----------------|-----------------|--------------|----------------| | A'_1 | 1 | 1 | 1 | 1 | 1 | 1 | | x^2+y^2, z^2 | | A_2' | 1 | | -1 | | | | | · | | E' | 2 | -1 | 0 | 2 | -1 | 0 | (x,y) | (x^2-y^2,xy) | | A", | 1 | - 1 | 1 | -1 | -1 | -1 | | } | | A_2'' | 1 | | -1 | | | | z | | | E" | 2 | -1 | 0 | -2 | 1 | 0 | (R_x, R_y) | (xz, yz) | | | | | | | | | | E . | (b) Show that the f-orbital whose angular wave function is constant times $(\sin^2\theta \cos\theta \sin 2\phi)$ is f_{xyz} orbital. 2. (a) Find out the effect of polarization of incident radiation in the electronic transition of $[Cr(C_2O_4)_3]^{3-}$. (Given below the correlation table and character table). | O_h | D_3 | |----------|----------------------| | A_{2g} | A_2 (ground state) | | T_{lg} | $A_2 + E$ | | 1 2g | $A_1 + E$ | | D_3 | E | $2C_3$ | 3C ₂ | | | |---------------------|---|--------|-----------------|------------------|-----------------------| | A_{i} | 1 | 1 | 1 | | x^2+y^2,z^2 | | A ₂
E | 1 | 1 | -1 | z, Rz | · | | E | 2 | -1 | 0 | $(x,y)(R_x,R_y)$ | $(x^2-y^2,xy)(xz,yz)$ | (b) With the help of group theory find out the hybridization of carbon atom in CH_4 molecule. (Given below the character table for T_d point group.) | T_d | E | 8C ₃ | $3C_2$ | 6S ₄ | 6σ′ _d : | | • | |----------|---|-----------------|-----------|-----------------|--------------------|-------------------------------|--------------------------| | A_1 | 1 | 1 | 1 | 1 | 1 | | $x^2 + y^2 + z^2$ | | A_2 | 1 | 1 | 1 | -1 | -1 | | | | E | 2 | -1 | 2 | 0 | 0 | | $(2z^2-x^2-y^2,x^2-y^2)$ | | $T_{_1}$ | 3 | 0 | -1 | 1 | -1 | (R_x, R_y, R_z) | | | T_2 | 3 | 0 | -1 | -1 | 1 | (R_x, R_y, R_z) (x, y, z) | (xy, xz, yz) | | | | | | | | | | PG/IIIS/CHE-301/11 (Turn Over) 3. (a) Why NMR experiment is generally carried out at very low temperature? 2 (b) Calculate the angular momentum and magnetic moment values for a proton. (Given: g = 5.585, $h = 6.626 \times 10^{-34}$ J.s., $m_p = 1.673 \times 10^{-27}$ kg). 3 (c) Express the energy of an spin half nucleus in presence of a magnetic field. Explain why the energy of α -spin $\left(m_S = +\frac{1}{2}\right)$ of nucleus decreases linearly whereas that of β -spin $\left(m_S = -\frac{1}{2}\right)$ increases with the increase in the external magnetic field. 5 4. (a) Use group theoretical principle to determine the symmetry of vibrational mode of cis-N₂F₂ molecule using Cartesian coordinate method. Identify the symmetry of IR and Raman active mode in this molecule. (Given below the character table for C_{2n} point group). | C_{2v} | E | C_{2} | $\sigma_{\nu}(xz)$ | $\sigma_{v}'(yz)$ | | | |-------------------------|---|---------|--------------------|-------------------|----------|-----------------| | A_1 | 1 | 1 | 1 | 1 | z | x^2, y^2, z^2 | | A_2 B_1 | 1 | 1 | -1 | -1 | R_{z} | xy | | $\boldsymbol{B}_{_{1}}$ | 1 | -1 | 1 | -1 | x, R_y | xz | | \boldsymbol{B}_2 | 1 | -1 | -1 | 1 | y, R_x | yz | (b) Establish the relation $$\chi(\alpha) = \frac{\sin\left(l + \frac{1}{2}\right)\alpha}{\sin\alpha/2}$$ where the term have usual significance. 5. Establish a correlation diagram for a d^2 ion in an octahedral environment. (Given below the character table for O_h point group). | 0, | E | 8C3 | 6 <i>C</i> , | 6 <i>C</i> ₁ | $3C_2(=C_4^2)$ | i | 654 | 85, | $3\sigma_k$ | 6σ, | | | |-------------|---|-----|--------------|-------------------------|----------------|---|-----|-----|-------------|-----|-----------------------------------|--------------------------| | A_{1g} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | $x^2 + y^2 + z^2$ | | | | | | | 1 | | | | | | · | | | E, | 2 | -1 | 0 | 0 | 2 | 2 | 0 | -1 | 2 | . 0 | | $(2z^2-x^2-y^2,x^2-y^2)$ | | <i>T</i> ,, | 3 | 0 | -1 | 1 | -1 | 3 | 1 | 0 | -1 | -1 | $(R_{\cdot},R_{\cdot},R_{\cdot})$ | | PG/IIIS/CHE-301/11 (Turn Over) | 0, | E | 8 <i>C</i> , | 6 C ₂ | 6C4 | $3C_{1}(=C_{4}^{2})$ | į | 65 | 8.5, | 3σ, | 6o', | | | |-----------------|---|--------------|-------------------------|-----|----------------------|----|----|------------|-----|------|-----------|--------------| | T _{2g} | 3 | 0 | 1 | -1 | -1 | 3 | -1 | 0 | -1 | 1 | | (xz, yz, xy) | | A_{is} | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | | | | A_{2n} | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | | | | E. | 2 | -1 | 0 | 0 | 2 | -2 | 0 | % 1 | -2 | 0 | | | | T _{1#} | 3 | 0 | -1 | 1 | -1 . | -3 | -1 | 0 | 1 | . 1 | (x, y, z) | | | T 2.0 | 3 | 0 | 1 | -1 | -1 | -3 | 1 | 0 | 1 | -1 | | | - 6. (a) What type of structural information we can predict from NQR spectra? Explain the NQR spectra of phosphorous pentachloride. 2 + 2 - (b) Draw and explain IR spectrum of (C₅H₅)₂Fe₂(CO)₄ molecule. 3 - (c) Justify the IR frequencies of the following silver cyanide complexes. $$[Ag(CN)_4]^{3-}$$ 2135 cm⁻¹ $[Ag(CN)_3]^{2-}$ 2105 cm⁻¹ $[Ag(CN)_2]^{-}$ 2092 cm⁻¹ 7. (a) Draw the UV-PE spectra of crystalline MnF_2 and FeF₂ and explain the characteristics features. 2 + 2 - (b) How many fundamental vibrations you will expect for CO₂ molecule? Draw all the vibrational modes. - (c) Why IR frequencies of Platinum carbonyl complexes decrease in the order. cis- $$[Pt(CO)_2Cl_2] > [Pt(CO)_4]$$ (d) Explain why IR frequency of $C \equiv N$ bond of $[Mn(CO)_3(NC - CH_2 - CH_2 - CN) Cl]$ is at 2068 cm⁻¹ whereas the IR frequency for the same bond in free succinonitrile is at 2257 cm⁻¹. # (Physical Special) ### GROUP - A Answer any two of the following - 1. (a) Round off the following numbers correct upto 4-significant figures: - (i) 56·243827 - (ii) 0.235082 PG/IIIS/CHE-301/11 (Turn Over) | (b) | Write down the approximate value of $\pi/4$ correct upto 4-significant figure and then find | | | | | | | | | | | |-----|--|---|----------------|------------|-----------|---|--|--|--|--|--| | | (i) Absolute error(ii) Relative error(iii) Relative percentage error. | | | | | | | | | | | | (c) | Calculate f | (1·6) whe | re | | • | 5 | | | | | | | | x 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | | | | | | | | | y 0·11246 | 0.14032 | 0.16800 | 0.19547 | 0.22270 | | | | | | | | (a) | Define: | | | | | 5 | | | | | | | | (i) Nilpot(ii) Idemp(iii) Invers(iv) Trace(v) Diagon | otent matr
e of a matro
of a matrix | ix
rix
K | | | | | | | | | | (b) | Derive the matrix representation of \hat{L}^2 using Y_{lm} as the basis function with $l=1$. | | | | | | | | | | | | (a) | Calculate the | - | | | | 5 | | | | | | | (b) | Show that I self-consist | - | | is valid f | or Hartru | 5 | | | | | | 3. 4. Describe few experiments which need to introduce the hypothesis of electronic spin. #### GROUP - B # Answer any two of the following - 5. (a) What do you mean by linear function space? Illustrate with an example. Obtain the transformation matrix which transform the *n*-dim base vectors $(e_1, e_2 \dots e_n)$ into its prime set $(e_1', e_2' \dots e_n')$. - (b) What do you understand by linear subspace and linear product space? - **6.** (a) Eigen vector matrix that diagonalism a Hermitian matrix is unitary in nature. Explain. - (b) Show that the set of n-degenerate orbitals form a bais for the representation of an n-dimensional IR of the point group to which the molecule belongs. What do you understand by accidental degeneracy? 3+5+2 # (16) | 7. | (a) | Find out the value of S_{α} and S^{2} using their matrix representation. | 4 | |----|-----|---|---| | | (b) | For a given space orbital ϕ_1 construct an anti-
symmetric two electron wavefunction and show | | | | | that it is an eigenfunction \hat{S}_z operator. | 4 |