M.Sc. 3rd Semester Examination, 2011

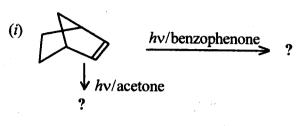
CHEMISTRY

PAPER-CEM-301.

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks


(Organic Special)

Answer any five questions taking at least two from each Group

GROUP - A

(a) Show various transitions between excited and ground states of organic molecules in a Jablouski diagram and identify their importance in photochemical reactions.

(b) Predict the product/s of the following reactions with mechanism (attempt *one* only): 2×1

(ii) Ph
$$C = 0$$
 $hv/$ trans-butene/ cis-butene

2. What is Paterno-Büchi addition reaction? Explain the mechanism of the reaction with suitable example and also predict the products of the following reactions with mechanism (attempt any two):

(i)
$$(CH_3)_2 CO + CH = CH$$

CN CN

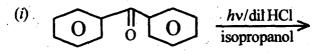
(ii) (a)
$$Ph$$
 Ph + hv/C_6H_6

$$(b) \underset{\text{Ph}}{\stackrel{\text{O}}{\longrightarrow}} H + \underbrace{\begin{pmatrix} C_4 H_9 \\ C_1 H_2 \end{pmatrix}} \xrightarrow{hv} ? 1$$

PG/IIIS/CHE-301/11

Continued)

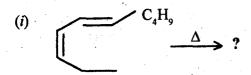
(iii)
$$COOCH_3$$
 + $Ph-C \equiv C-Ph$ hv COOCH₃

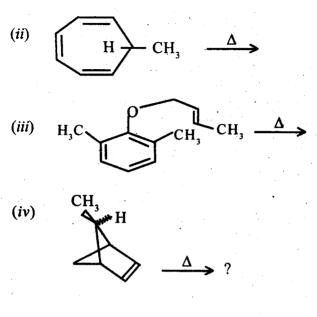

3. Predict the product of the following reactions with plausible mechanism: 3+2+3

(i)
$$+$$
 $\frac{hv}{-10^{\circ}C}$

(ii)
$$\stackrel{O}{\longrightarrow}$$
 ? Or $\stackrel{h\nu/\text{CH}_3\text{OH}}{\longrightarrow}$?

(iii)
$$\frac{hv}{\text{Benze}}$$
 ?


- 4. (a) Mischler's ketone does not undergoes photoreduction under the same condition at which benzophone absorbs. Explain.
 - (b) Predict the product/s with mechanism (attempt any two):



(ii)
$$COOEt + CH_3OH \xrightarrow{hv}$$

(iii)
$$CH-Ph$$
 $||$ $hv \rightarrow ?$ CH-Ph cis trans stilbene

5. What is (i, g) sigmatrofic shifts? Explain with examples end hence predict the product/s of the following reactions with mechanism (attempt any three): $2 + 3 \times 2$

GROUP - B

6. (a) How can you effect the following conversions?

Explain in terms of steric and stereoelectronic effects involved. Indicate and name the natural product.

$$R = n - C_{1} \cdot H_{e}$$

PG/IIIS/CHE-301/11

- (b) How can you convert the more stable diastereomer of ethyl-4-t-butyleyclohexanone completely into the less stable one? Explain the reactions involved.
- 7. Complete the following reaction sequence explaining in terms of stereoelectronic and steric effects, wherever necessary:

1-Benzoylcyclohexene
$$\xrightarrow{\text{PhMgBr}} \underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\text{Ac}_2\text{O}} ?$$

$$\underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\text{H}_3\text{O}^{\oplus}} \underline{\underline{C}} \xrightarrow{\text{Br}_2} ? \underline{\underline{C}} \xrightarrow{\text{NaOEt}} \underline{\underline{D}} \xrightarrow{\text{RoOH}} ?$$

$$\underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\text{NaOEt}} ? \underline{\underline{C}} \xrightarrow{\text{NaOEt}} ?$$

$$\underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\text{NaOEt}} ?$$

$$\underline{\underline{A}} + \underline{\underline{A}} \xrightarrow{\underline{A}} ?$$

$$\underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\underline{A}} ?$$

$$\underline{\underline{A}} + \underline{\underline{A}} \xrightarrow{\underline{A}} ?$$

$$\underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\underline{A}} ?$$

$$\underline{\underline{A}} + \underline{\underline{B}} \xrightarrow{\underline{A}} ?$$

$$\underline{\underline{A}} + \underline{\underline{A}} \xrightarrow{\underline{A}} ?$$

$$\underline{\underline{A}}$$

8. (a) Deduce the Eliel equation showing the relationship between equilibrium constant and different specific rate constants of a mobile system. How can you derive Winstein-Holness equation from the first principle and also from the Eliel equation?

(b)	Comment on the optical activity of cis-decalin and
	its 1- or 2- substituted derivative

- 9. (a) Delineate the symmetry elements of *cis*-decalin and *trans*-decalin and write their point groups.
 - (b) Write down the conformers of both enantiomers of cis-1-decalone-, indicate the torsion angle signs at the ring junction (both sides) of each and hence label each conformer of each enantiomer as in steroidal or non-steroidal form.
- 10. (a) cis-2-Decalone upon bromination with bromine in acetic acid forms predominantly the axial-1bromo derivative. Explain the fact in terms of mechanism, steric and stereoelectronic factors involved.
 - (b) (S)-Methylethynyl-t-butylcarbinol when treated with SOCl₂ in dry ether in presence or absence of pyridine produces the same product, though following different mechanisms. Show the mechanisms involving the π-orbitals, and name the product specifying its absolute configuration.

(Inorganic Special)

Answer any four questions

1. (a) With the help of group theory determine the symmetries of the group of orbitals of F atoms which are effective for σ -bond formation in PF₅ molecule. Construct a qualitative σ -bonding molecular orbital energy level diagram for PF₅ molecule. From this molecular orbital energy level diagram comment about the π -acid nature of PF₅ molecule. (Given below the character table for D_{3h} point group).

8

D_{3h}	E	$2C_3$	$3C_2$	σ_{h}	2S ₃	$2\sigma_{\nu}$		
A'_1	1	1	1	1	1	1		x^2+y^2, z^2
A_2'	1		-1					·
E'	2	-1	0	2	-1	0	(x,y)	(x^2-y^2,xy)
A",	1	- 1	1	-1	-1	-1		}
A_2''	1		-1				z	
E"	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)
								E .

(b) Show that the f-orbital whose angular wave function is constant times $(\sin^2\theta \cos\theta \sin 2\phi)$ is f_{xyz} orbital.

2. (a) Find out the effect of polarization of incident radiation in the electronic transition of $[Cr(C_2O_4)_3]^{3-}$. (Given below the correlation table and character table).

O_h	D_3
A_{2g}	A_2 (ground state)
T_{lg}	$A_2 + E$
1 2g	$A_1 + E$

D_3	E	$2C_3$	3C ₂		
A_{i}	1	1	1		x^2+y^2,z^2
A ₂ E	1	1	-1	z, Rz	·
E	2	-1	0	$(x,y)(R_x,R_y)$	$(x^2-y^2,xy)(xz,yz)$

(b) With the help of group theory find out the hybridization of carbon atom in CH_4 molecule. (Given below the character table for T_d point group.)

T_d	E	8C ₃	$3C_2$	6S ₄	6σ′ _d :		•
A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2-x^2-y^2,x^2-y^2)$
$T_{_1}$	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	1	(R_x, R_y, R_z) (x, y, z)	(xy, xz, yz)

PG/IIIS/CHE-301/11

(Turn Over)

3. (a) Why NMR experiment is generally carried out at very low temperature?

2

(b) Calculate the angular momentum and magnetic moment values for a proton. (Given: g = 5.585, $h = 6.626 \times 10^{-34}$ J.s., $m_p = 1.673 \times 10^{-27}$ kg).

3

(c) Express the energy of an spin half nucleus in presence of a magnetic field. Explain why the energy of α -spin $\left(m_S = +\frac{1}{2}\right)$ of nucleus decreases linearly whereas that of β -spin $\left(m_S = -\frac{1}{2}\right)$ increases with the increase in the external magnetic field.

5

4. (a) Use group theoretical principle to determine the symmetry of vibrational mode of cis-N₂F₂ molecule using Cartesian coordinate method. Identify the symmetry of IR and Raman active

mode in this molecule. (Given below the character table for C_{2n} point group).

C_{2v}	E	C_{2}	$\sigma_{\nu}(xz)$	$\sigma_{v}'(yz)$		
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2 B_1	1	1	-1	-1	R_{z}	xy
$\boldsymbol{B}_{_{1}}$	1	-1	1	-1	x, R_y	xz
\boldsymbol{B}_2	1	-1	-1	1	y, R_x	yz

(b) Establish the relation

$$\chi(\alpha) = \frac{\sin\left(l + \frac{1}{2}\right)\alpha}{\sin\alpha/2}$$

where the term have usual significance.

5. Establish a correlation diagram for a d^2 ion in an octahedral environment. (Given below the character table for O_h point group).

0,	E	8C3	6 <i>C</i> ,	6 <i>C</i> ₁	$3C_2(=C_4^2)$	i	654	85,	$3\sigma_k$	6σ,		
A_{1g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
					1						·	
E,	2	-1	0	0	2	2	0	-1	2	. 0		$(2z^2-x^2-y^2,x^2-y^2)$
<i>T</i> ,,	3	0	-1	1	-1	3	1	0	-1	-1	$(R_{\cdot},R_{\cdot},R_{\cdot})$	

PG/IIIS/CHE-301/11

(Turn Over)

0,	E	8 <i>C</i> ,	6 C ₂	6C4	$3C_{1}(=C_{4}^{2})$	į	65	8.5,	3σ,	6o',		
T _{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xz, yz, xy)
A_{is}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2n}	1	1	-1	-1	1	-1	1	-1	-1	1		
E.	2	-1	0	0	2	-2	0	% 1	-2	0		
T _{1#}	3	0	-1	1	-1 .	-3	-1	0	1	. 1	(x, y, z)	
T 2.0	3	0	1	-1	-1	-3	1	0	1	-1		

- 6. (a) What type of structural information we can predict from NQR spectra? Explain the NQR spectra of phosphorous pentachloride. 2 + 2
 - (b) Draw and explain IR spectrum of (C₅H₅)₂Fe₂(CO)₄ molecule. 3
 - (c) Justify the IR frequencies of the following silver cyanide complexes.

$$[Ag(CN)_4]^{3-}$$
 2135 cm⁻¹
 $[Ag(CN)_3]^{2-}$ 2105 cm⁻¹
 $[Ag(CN)_2]^{-}$ 2092 cm⁻¹

7. (a) Draw the UV-PE spectra of crystalline MnF_2 and FeF₂ and explain the characteristics features. 2 + 2

- (b) How many fundamental vibrations you will expect for CO₂ molecule? Draw all the vibrational modes.
- (c) Why IR frequencies of Platinum carbonyl complexes decrease in the order.

cis-
$$[Pt(CO)_2Cl_2] > [Pt(CO)_4]$$

(d) Explain why IR frequency of $C \equiv N$ bond of $[Mn(CO)_3(NC - CH_2 - CH_2 - CN) Cl]$ is at 2068 cm⁻¹ whereas the IR frequency for the same bond in free succinonitrile is at 2257 cm⁻¹.

(Physical Special)

GROUP - A

Answer any two of the following

- 1. (a) Round off the following numbers correct upto 4-significant figures:
 - (i) 56·243827
 - (ii) 0.235082

PG/IIIS/CHE-301/11

(Turn Over)

(b)	Write down the approximate value of $\pi/4$ correct upto 4-significant figure and then find										
	(i) Absolute error(ii) Relative error(iii) Relative percentage error.										
(c)	Calculate f	(1·6) whe	re		•	5					
	x 1.0	1.5	2.0	2.5	3.0						
	y 0·11246	0.14032	0.16800	0.19547	0.22270						
(a)	Define:					5					
	(i) Nilpot(ii) Idemp(iii) Invers(iv) Trace(v) Diagon	otent matr e of a matro of a matrix	ix rix K								
(b)	Derive the matrix representation of \hat{L}^2 using Y_{lm} as the basis function with $l=1$.										
(a)	Calculate the	-				5					
(b)	Show that I self-consist	-		is valid f	or Hartru	5					

3.

4. Describe few experiments which need to introduce the hypothesis of electronic spin.

GROUP - B

Answer any two of the following

- 5. (a) What do you mean by linear function space?

 Illustrate with an example. Obtain the transformation matrix which transform the *n*-dim base vectors $(e_1, e_2 \dots e_n)$ into its prime set $(e_1', e_2' \dots e_n')$.
 - (b) What do you understand by linear subspace and linear product space?
- **6.** (a) Eigen vector matrix that diagonalism a Hermitian matrix is unitary in nature. Explain.
 - (b) Show that the set of n-degenerate orbitals form a bais for the representation of an n-dimensional IR of the point group to which the molecule belongs. What do you understand by accidental degeneracy?
 3+5+2

(16)

7.	(a)	Find out the value of S_{α} and S^{2} using their matrix representation.	4
	(b)	For a given space orbital ϕ_1 construct an anti- symmetric two electron wavefunction and show	
		that it is an eigenfunction \hat{S}_z operator.	4