M.Sc. 2nd Semester Examination, 2010 ## **CHEMISTRY** (Inorganic) Paper-CH-1203 Full Marks: 40 Time: 2 hours ## Answer any four questions The figures in the right-hand margin indicate marks 1. (a) Predict the product of the following reactions: (i) $$C_{60} = \frac{[Ni(PEt_3)_4]}{toluene}$$ (ii) $$\operatorname{Cp} \operatorname{Fe}(\operatorname{CO})_2 \operatorname{I} + \operatorname{AgBF}_4 + \operatorname{C}_2 \operatorname{H}_4 \longrightarrow$$ (iii) $$Mo(g) + 3C_4H_6(g) - \frac{-196^{\circ}C}{}$$ 6 (b) How will you synthesize the following carbene complexes? (i) $$C_{P_2}$$ $T_a = CH_2$ CH_2 3 - (c) Write down the possible binding modes of an allyl ligand. - 2. With the help of "Great Orthogonality Theorem" complete the following character table: 4+4+2 | C_{4v} | $E \qquad 2C_4 C_2 \qquad 2\sigma_{\nu} 2\sigma_{d}$ | | • | |----------|--|-------|---------------| | $A_{_1}$ | | Z | x^2+y^2,z^2 | | A_2 | | R_z | | | C_{4v} | $\begin{bmatrix} E & 2C_4 & C_2 & 2\sigma_4 & 2\sigma_4 \end{bmatrix}$ | , | | |------------|--|------------------|-------------| | $B_{_{1}}$ | | . • • | $x^2 - y^2$ | | B_{2} | | | хy | | Ē | | $(x,y)(R_x,R_y)$ | (xz, yz) | What are the allowed transitions, and their polarization of a B_1 electron in a $C_{4\nu}$ molecule? Reduce the following representation into its components: - 3. What is cyclic voltammetry? Why it is so called? What is its applications? Explain why dissolved O_2 is to be removed from the polarographic cell before experiment? 3+2+2+3 - 4. (a) How will you synthesize $Zr(C_3H_5)_4$? - (b) Discuss cis-/trans-isomerization of Cp, Fe, (CO)₄ in the light fluxionality. 4 (c) Predict the product of the following reactions: $$\begin{array}{c|c} (ii) & \uparrow & PhCH_2Cl & hv \\ OC & \downarrow & CO \end{array}$$ (iii) $$ZrCl_4 + Na/Hg + C_7H_8 \longrightarrow$$ (d) How will you synthesize $$Pd$$ Cl 2 starting from Na₂[PdCl₄)? 1 - 5. What is the basic difference between atomic emission and atomic absorption? How do you estimate trace amount of mercury by AAS technique? 5+5 - 6. (a) Establish the relation: $$a_j = \frac{1}{h} \sum_{R} X(R) X_i(R).$$ - (b) For cubic molecule or molecule of heigher symmetry the radiation with an electric vector in any direction will excite the transition, if it is allowed. Explain. - (c) ClO_2 molecule is trapped in a solid. Its ground state is known to be B_1 . Polarised light parallel to the y-axis (parallel to oxygen-oxygen separation) excites the molecule to an upper state. What is the symmetry of that state? | $C_{2\nu}$ | E | C_{2} | $\sigma_{\nu}(xz)$ | $\sigma_{\nu}(yz)$ | | | |------------|----|---------|--------------------|--------------------|----------|-----------------| | A_1 | 1. | 1 | 1 | 1 | Z | x^2, y^2, z^2 | | A_2 | 1 | 1 | -1 | -1 | R_z | хy | | B_1 | 1 | -1 | 1 | -1 | x, R_y | xz | | B_2 | 1 | -1 | -1 | 1 | y, R_x | yz | | (<i>d</i>) | The energy integral $\psi_i H \psi_j d\tau$ may be non zero only if ψ_i and ψ_j belong to the same irreducible representation of the molecular point Group. | | | | | |--------------|---|--|-----|--|--| | | Expl | lain. | | | | | (a) | Disc | cuss 'A' and 'I' mechanism. | 2+2 | | | | (b) | Wha | at is 'macrocyclic effect'? | : | | | | (c) | Hov | v will you synthesize | 2 | | | | | <i>(i)</i> | s-diamino dichloroptatinum | | | | | | (ii) | starting from [PtCl ₄] ²⁻ | | | | | | | | | | | (d) What do you mean by zero field splitting?