M.Sc. 4th Semester Examination, 2010

CHEMISTRY

PAPER — CH - 2201

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

(Inorganic)

Answer any four questions

1. (a) Which one of the following two complexes will have more superexchange interaction and why? 3

$$[(NH_3)_5 Cr - O - Cr(NH_3)_5] Br_4$$

 $[(NH_3)_5 Cr - OH - Cr(NH_3)_5] Br_5$

(b) Explain the following magnetic moment data (at 27°C):

 $[Sm(acac)_3]: 1.4 B.M$

 $[Eu(acac)_3]: 3.5 B.M$

•	(c) What is the value of magnetic dipole moment associated with a loop carrying current?							
2.	(a) Distinguish between ferromagnetic, ferrimagnetic and antiferromagnetic materials. Give an example for each class of material. 4+							
	(b)	Explain the diazoaminober		nature of bis er (II) complex.				
	(c)	What is Bohr m	agneton?					
3.	Writ	te short notes on	:	3+3+				
	(a)	Intra and interm	olecular antif	erromagnetism.				
	(b)	Direct metal-me	etal interaction	1.				
	(c)	Lande interval r	ule.					
4.	(a) Derive an expression for magnetic moment for a substance whose multiplet width small as compared to kT.							
	(b)	Explain the origination.	gin of diamag	netism in a free				

(Continued)

PG/IVS/CH-2201/10

- 5. (a) What are "complementary" and "non-complementary" electron transfer processes? Give examples.
 - (b) How would you distinguish between "outer sphere" and "inner sphere" electron transfer mechanisms?
- 6. (a) What are "labile" and "inert" complexes?

 How they are related with thermodynamically
 "stable" and "unstable" complexes. 2+2
 - (b) Which one of the following two complexes react faster? Give reasons.

$$[Fe(H_2O)_6]^{2+}$$
 and $[Fe(H_2O)_6]^{3+}$

- (c) What is the significance of the following facts taken together for the mechanism of substitution at Co (III) in aqueous solution?
 - (i) The rate of aquation are always given by the following expression:

rate =
$$K_{aq} [Co(NH_3)_5 X]^{2+}$$

5

	observed. Instead, water enters first and is	
	subsequently replaced by Y^- .	2
7. (a)	Base hydrolysis of [Co(NH ₃) ₅ Cl] ²⁺ is about 10 ⁶	
	times faster than acid hydrolysis. Explain.	5
(b)	State the principles of "Murcus theory".	5

(Organic)

Answer five questions, taking at least two from each Group

GROUP-A

1. (a) The parabolic Hammett plot obtained when $\log k/k_0$ in the reaction between substituted benzyl chlorides, carrying para- and metasubstituents in the benzene ring and aniline (where k and k_0 are the rate constants of substituted and unsubstituted benzyl chloride respectively) are plotted against σ values of the substituents indicates a change in the nature of the transition state with change of substituents. Elucidate.

- (b) What idea do you get about the transition state from the fact that you need to use σ⁺ values of the substituents in order to get a linear Hammett plot with a negative slope in the Beckmann rearrangement of acetophenone oximes, carrying para— and meta—substituents in the benzene ring, in 98% sulfuric acid?
- 2. (a) Explain why the Hammett plot obtained when pK_{BH} in the ionization of substituted anilines is linear but the points due to p-NO₂ and p-CN deviate from the straight line but the points due to m-NO₂ and m-CN do not deviate.
 - (b) Solvolysis of both the compound A and B (O Bs = brosylate) were subjected to Yukawa Tsuno equation and the $r^{+/-}$ values of 1.00 and 0.54 were obtained. How does this observation indicates a difference in the nature of the respective transition states.

$$H_3C$$
 C
 C
 CH_3
 C
 C
 CH_2OBs
 C
 CH_3

- 3. Indicate the difficulties in using dielectric constant as a solvent parameter with suitable examples. What is the basis of Grunwald Winstein solvent parameter Y? Why the use of this parameter in S_N2 type reactions give unsatisfactory results?
- 4. What is the conceptual difference between Extended Hammett Approach and Dual Substituent Parameter Treatment for separation of polar and mesomeric effects exerted by a substituent? The following DSP equations are obtained in the dediazotization of aromatic diazo compound carrying meta— and para—substituents in the benzene ring:

For meta-substituents:

$$\log (k/k_0) = -4, 5\sigma_1 - 1.8 \sigma_R^+$$

For para-substituents:

$$\log (k/k_0) = -3, 7\sigma_1 + 2.4\sigma_R^+$$

How do these equations rationalize that the dediazotization follow $S_N 1$ pathway?

8

5. Predict the product/s of the following reactions indicating frontier orbital interactions in each case (F.O.I) (attempt any four):

(i)(ii)(iii) (iv)

- 6. Outline the stereochemical reasoning leading to the relative stereochemistry of the perhydrodiphenic acid diastereomers with *cisoid* backbone configuration. How will you correlate these compounds with the corresponding perhydrophenanthrene isomers.

 6+2
- 7. (a) Predict the products of the following reactions indicating the predominant one in each case by application of Felkin Ahn model: case (i), R = Et and case (ii), $R = \underline{t}$ -Bu,

PhCHRCHO + \underline{t} -Bu C(OLi) = CH₂ \longrightarrow Any enantiomer.

- (b) Write down the salient points of the axial haloketone rule.
- 8. (a) Predict the sign of the cotton effect that the nonsteroid form of the following compound (A) and its epimeric 3-bromo derivatives would exhibit. Name the compound, mentioning the absolute configuration of its chiral centers.

- (b) Predict the sign of the Cotton effect that 3p, 4α -di-p-dimethylaminobenzoyloxycholestane would exhibit. Show that nature of the CD curve, units of the two axes and the position of the λ_{max} . 3
- 9. Attempt any two:

 4×2

(a) What will happen when compounds (B) and (C) are treated with a strong base? Name the compounds. Comment on the optical activity of the corresponding hydrocarbons.

PG/IVS/CH-2201/10

(Turn Over)

(b) Elucidate the absolute configuration of the following compounds by application of the relevant rules. Name the rules.

- (i) (+)-Hexahelicene
- (ii) (-)-1-Chloro-1-Phenyl-3-ethylallene
- (iii) (+)-2-Chloropropionic acid.
- (c) Show the mechanism of the following reactions and specify the absolute configuration of the product(s):

 $(\underline{R})\text{-Methylethynyl-}\underline{t}\text{-butylcarbinol} \xrightarrow{SOCl_2/Py} ?$ $|\underline{SOCl_2}|$ $|\underline{dry \text{ ether}}|$?

(Physical Special)

Answer any four questions, taking two from each Group

GROUP-A

Answer any two of the following

1. (a) Give a brief introduction of two approximate methods in quantum mechanics.

- (b) State and prove Eckart's theorem for the ground state.
- 2. (a) Using the trial function $\psi = e^{-cr}$ calculate the ground state energy of H-atom.
 - (b) Derive the secular determinant as encountered in linear variational theorem.

5

5

5

(Turn Over)

3. (a) Calculate the ground state energy of an anharmonic oscillator whose potential energy is

(i)
$$U(X) = \frac{1}{2}KX^2 + \frac{1}{6}K_2X^3$$

(ii)
$$U(X) = \frac{1}{2}KX^2 + \frac{1}{6}K_2X^3 + \frac{1}{24}K_3X^4$$
.

Comment on the result.

(b) Derive the expression of total π -electronic energy in terms of charge density and bond order.

4.	(a) Derive the energy levels and general expression	•
	for the MO's in linear polyenes.	5

(b) Derive the *n* th order perturbation equation for non-degenerate cases.

GROUP-B

Answer any two of the following

- 5. (a) Show that the perturbation energy upto third order can be obtained for a knowledge of wavefunction upto 1st order.
 - (b) Derive $E_k^{(1)}$ and $C_{kj}^{(1)}$.
- 6. (a) State and explain the working principle of a semiconductor.
 - (b) How would you distinguish a body centered cubic lattice and a face centered cubic lattice by calculating geometrical structure factor.
- 7. (a) When KCl crystal is heated in air, no colour is observed but when it is heated in K vapour it shows violet colour. Explain the phenomenon.

5

5

- (b) Does the F-absorption frequency depend on the interionic distance?
- (c) Given the density of KBr is 2.75 g/cc and that the length of an edge of a cubic unit cell is 654 pm. Determine how many formula units of KBr there are in a unit cell. Does the unit cell have a NaCl or a CsCl structure?
- 8. Use Cartesian co-ordinate as well as internal co-ordinate approach to obtain the symmetry of vibrational modes in ClF_3 . Find the symmetry of pure and mixed vibrational modes of ClF_3 . Following is the character table for $C_{2\nu}$.

$C_{2\nu}$	E	C_2	$\sigma_{v}(xz)$	$\sigma_{\nu}(yz)$		
A_1	1	1	1	1	T_z	X^2, Y^2, Z^2
A_2	1	1	-1	-1	R_z	XY
B_1	1	-1,	1	-1	$T_X R_Y$	XZ
B_2	1	-1	-1		$T_{\gamma}R_{\chi}$	
						·

