M.Sc 3rd Semester Examination 2010 CHEMISTRY

PAPER - CH-2103

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

(Physical Special)

Answer any four questions taking one from each Group

GROUP-A

Answer any one of the following:

- 1. (a) What do you mean by prolate and oblate symmetric top? Give one example for each.
 - (b) Constract the Hamiltonian operators for prolate and oblate symmetric top and hence obtain their energies using the eigen value equation of \hat{L}^2 , \hat{L}_Z and \hat{L}_Z operator w.r.t the Wigner function D_{MK}^J , where J, M and K are quantum number associated with the total angular momentum, Z component of angular momentum in the lab frame and Z component of angular momentum in the molecular frame respectively.

(Turn Over)

- (c) Show that, the energy of prolate symmetric top increases with the increasing value of k, whereas this trend is opposite in case of oblate symmetric top. 2+6+2
- First order co-efficient for transition from state i' to sate 'f' is given by,

$$C_f^{(1)} = -\frac{i}{\hbar} \int_0^t e^{i\omega_n t} V_f(t) dt$$

where, $V_{ii}(t) = \langle f | H'(t) | i \rangle$; H'(t) is the time dependent perturbing field.

- (i) Assume H'(t) as Harmonic perturbation (say $H'(t) = V(r) \cos(\omega t)$) and give a theoretical explanation for the phenomena of stimulated absorption and stimulated emission processes.
- (ii) Assume H'(t) as constant perturbation and ω_{fi} having very small value to obtain,

$$P_{i \to f} = |C_f^{(1)}|^2 = \frac{|V_{fi}|^2}{\hbar^2} \cdot t^2.$$

Comment on the above expression.

GROUP-B

Answer any one of the following:

3. (a) Using Einstein treatment of absorption and emission phenomenon for a two level system, show that,

$$\frac{A_{21}}{B_{21}\varrho(\gamma)}=e^{h\gamma/KT}-1$$

where symbols have their usual significance. Inversion of population was first achieved in the microwave region of spectrum. Explain.

- (b) Write down the characteristic features of LASER radiation. (5+2)+3
- 4. (a) Inversion of population cannot be achieved in two level system. Justify.
 - (b) Write down the principle of Q-switching. How do you obtain a giant LASER pulse using Q-switching technique? 6+4

GROUP-C

Answer any one of the following:

5. What do you mean by dynamic quenching of a fluorophore? Deduce the following form of Stern-Volmer equation:

$$\frac{\phi^{\circ}_{f}}{\phi_{f}} = 1 + K_{SV}[Q]$$

where symbols have their usual significance. Describe one method for the determination of dynamic quenching constant. 1+6+3

6. What do you mean by E-type and P-type delayed emission? Write down the different photophysical steps and their rate for p-type delayed emission. How do you obtain ΔE_{ST} (energy gap between the first excited singlet and triplet state) for a molecule showing E-type delayed emission? 3+2+5

GROUP-D

Answer any one of the following:

7. (a) Express the energy of an spin half nucleus in presence of a magnetic field applied in the z-direction.

- (b) What is Larmor precession? What is the relation between the frequency of Larmor precession and the frequency of NMR transition?
- (c) Explain, why NMR spectrum of an organic compound is taken in a deutorated solvent.

 4+3+3
- 8. (a) Draw schematically the energy level of A X system (spin of A and $X = \frac{1}{2}$) in presence of a magnetic field, in presence of spin-spin interaction. Indicate the NMR transitions.
 - (b) Write the wavefunction for A_2 system (spin = $\frac{1}{2}$) and indicate the symmetric and antisymmetric one.
 - (c) Explain, what is meant by chemical shift? What is the relation between chemical shift and shielding constant?

 4+3+3

(Inorganic Special)

Answer any four questions:

1. Explain why:

 $2\frac{1}{2}\times4$

- (a) Dissolved oxygen is to be removed from the polarographic cell before an experiment.
- (b) Increased viscosity increases fluorescence intensity whereas increased temperature decreases it.
- (c) Hydrogen atom shows ESR spectrum whereas hydrogen molecule does not.
- (d) Limiting current curve runs parallel to the voltage axis in voltametry.
- 2. Write short notes on (any two):

5+5

- (i) Hollow cathode lamp
- (ii) Photoemissive cell
- (iii) Nonflame AAS technique.

- 3. (a) What kind of weak interactions are involved in "molecular crystal engineering"?
 - (b) Write down the applications of "Metal-organic frameworks".
 - (c) Discuss the band structure of "semiconductor" and "insulator".
 - (d) "Mg" is a metallic conductor while "Si" is an insulator. Explain in the light of band theory. 2+2+4+2
- 4. (a) Why does defect occur in a crystal? What is a perfect crystal?
 - (b) What do you mean by "metal excess defect"?
 - (c) Discuss "Frenkel and Schottky" defects. 3 + 2 + 5
- 5. How do you estimate?

4 + 3 + 3

- (i) Cadmium in blood
- (ii) Arsenic in hair
- (iii) Lade in petroleum.

- 6. (a) Schematically represent the formation of metallo-supramolecules and coordination polymers by convergent and divergent approach respectively.
 - (b) What do you mean by 'building block' in a coordination polymer? Identify synthons and Tectons in the following coordination polymer.

- (c) A molecular square is formed when Mⁿ⁺ (metal ion) is reacted with ethylene diamine and 4, 4'-bipy ligand. Write down the probable structures. What structure of the product will you expect when the same rection is performed in absence of ethylene diamine ligand.
- (d) What is the aim of "supramolecular chemistry"? 2+3+3+2
- 7. (a) What is the basic principle of colorimetry? How do you determine the molecular composition of a complex colorimetrically?

- (b) How do you estimate gold in photographic film?
- (c) Write short notes on "Interferences in AAS analysis". (1+4)+2+3

(Organic Special)

Paper — CH-2103

Answer any five questions:

- 1. (a) Identify the spin systems (pople notation) constituted by the underlined protons in any two of the following molecules: 2+2
 - (i) CICH, CHCl,
 - (ii) Ph CHBr CH2Br
 - (iii) CH₃CH₂CH₂NO₂
 - (b) Attempt any two questions:

- 2 + 2
- (i) Why is "superconducting Magnet" required for recording FT NMR spectra?
- (ii) Write down the structure of Eu (DPM)₃ and state what it is used for.
- (iii) What are the advantages of FT NMR over CW NMR?

- (a) (i) Depicting the three stable conformers, explain why the vicinal coupling constants in freely rotating carbon chains (alkyl groups) is around 7 Hz. Given, ³J_{HH} for Hs = 3 Hz and for aute Hs, ³J_{HH} = 15 Hz.
 - (ii) Draw the structures of two compounds where W coupling $({}^4J_{111})$ is present.

2 + 2

- (b) (i) Explain "Pseudocontact Shift" in connection with the use of Lanthanide Shift Reagents.
 - (ii) Compare, using necessary calculations, the Receptivity of ¹H and ¹³C nuclei in NMR spectroscopy. 2+2
- 3. (a) (i) How would you distinguish between the Z and E-isomers of $CH_3CI = CHCO_2Me$?
 - (ii) What is the usefulness of 'Rotating frame of Reference'? How can you calculate the 'repetition time' (D) in PFT NMR? 2+2

(b) (i) How would you calculate the expected ¹³C chemical shift of the C^{*} in the following compound? Show only the break-ups; values need not be used.

(ii) Explain "Spin Tickling" with reference to

SFORD experiment in ¹³C NMR

spectroscopy. 2+2

4. (a) Calculate $\delta^{13}C^*$ in the following compund:

CH₃COCH₂CH₂CO₂CH₃

Given, shielding values: α -CO₂ = 22.6 ppm and β -CO = 3.0 ppm.

(b) Explain what is Heavy Atom Effect $(^{13}CNMR)$. 4+4

PG/IIIS/CH-2103/10

(Turn Over)

- 5. (a) Distinguish between the following pairs of structural isomers (any two) by MS: 2+2
 - (i) PhOCH₂CH₃ and Ph CH₂O CH₃

$$(ii)$$
 MeO — CH_2CO_2Me and OMe

(iii) 2-Hexane and 3-Hexane.

(b) Attempt any four:

1 x 4

- (i) In Cl-MS, what are the reagent ion and the pseudomolecular ion if (CH₄ + NO) is used as the reagent gas?
- (ii) Calculate the apprarent mass (m) of a "metastable ion" from the masses of the parent ion (m_1) and the daughter ion (m_2) .
- (iii) If a compound contains 'n' nuclear of chlorine or bromine atoms, how many molecular ion-peaks would be observed in its MS?
- (iv) What is meant by 'TOF' in MS?

- 6. (a) (i) In HR EI-MS, what are the successive fields through which the ions coming out of the ionisation chamber are passed through?
 - (ii) Identify the compound which recorded peaks at m/z 128 & 126 (1:3), 91 (100%), 65.
 - (iii) Explain the formation of a peak at m/z 68 in the mass spectrum of 'Z'-Methyl crotonate.
 - (iv) What is the common mode of fragmentation in the mass spectra of phenyl acetate, benzyl acetate and acetaniliade? 1 x 4
 - (b) (i) In FAB-MS, why is a matrix used?
 - (ii) What kind of molecules are subjected to a soft ionisation MS technique?
 - (iii) Define "Resolution" (R) as used in MS.
 - (iv) What is the full form of ESI-MS?

1 x 4

7. Identify the compound, C_8H_7OBr , which recorded the following spectral data: IR: 1641 cm⁻¹; ¹H NMR: δ 4·47 (2H, s), 7·49 (2H, t, \underline{J} = 7Hz) 7·61 (¹H, t, \underline{J} = 7Hz), 7·99 (2H, d, \underline{J} = 7Hz); ¹³C NMR: δ 191·5 (C), 134·18 (C), 134·21 (CH), 129·17 (CH), 129·10 (CH), 31·1 (CH₂); ¹³C - ¹H correlations: δ 31·1 to δ 4·47; δ 129·1 to δ 7·49 and 7·99; δ 134·21 to δ 7·61; El-MS: m/z 200 & 198 (1:1), 119, 105, 77, 51. Explain all the data. Show its mass fragmentions.

8. Characterise the compound, $C_4H_6O_3$, from its given data. IR: 1730 cm⁻¹; ¹H NMR: $\delta 3.85$ (3 H, s) and $\delta 2.46$ (3H, s); ¹³C NMR: $\delta 191.8$ (C), 161.3 (C), 53.2 (CH₃), 26.9 (CH₃); El-MS: m/z 102 (M⁺), 71, 43; ¹H-¹³C correlations: $\delta 3.85$ to $\delta 53.2$; $\delta 2.46$ to $\delta 26.9$. Explain all the data.

8

8