2009

M.Sc.

2nd Semester Examination CHEMISTRY (PHYSICAL)

PAPER-CH-1201

Full Marks: 40

Time: 2 Hours

The questions are of equal value.

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

Answer any two of the following.

- 1. (a) Using the ladder operator technique find out the energies and wave functions in normalised form of harmonic oscillator.

 5+5
- 2. (a) Show that $\langle \Psi_{nlm} | \Psi_{n'l'm'} \rangle = \delta_{nn'} \delta_{ll'} \delta_{mm'}$.
 - (b) Explain normal Zeeman effect. 4
- 3. (a) Show that the orbitals of H-atom have n^2 fold degeneracy.
 - (b) Derive the operator form of \hat{L}^2 in spherical polar coordinate system.

- 4. (a) Find the commutator of \overline{H} and a_{\pm}^n for a linear harmonic oscillator. The symbols have their usual meaning.
 - (b) Find out $[L^2, Z]$.

4

Group-B

Answer any one of the followings.

- 5. (a) Define Oscillating reaction with a suitable example.
 - (b) What are complementary and non-complementary electron transfer reactions? Give example. 3
 - (c) The protein catalase catalyzes the reaction

$$2H_2O_2$$
 (aq) \longrightarrow $2H_2O$ (l) + O_2 (g) and has a Michaelis constant of $K_m = 25 \times 10^{-3}$ mol dm⁻³ and a turnover number of 4.0×10^7 S⁻¹. Calculate the initial rate of this reaction if the total enzyme concentration is 0.016×10^{-6} mol dm⁻³ and the initial substrate concentration is 4.32×10^{-6} mol dm⁻³. Calculate ν_{max} for this enzyme. Catalase has a single active site.

- 6. (a) What do you mean by asymmetry and electrophoretic effects? Compute electrophoretic component of velocity of a moving ion.

 2+2+2
 - (b) Write short note on dispersion of conductance. 4

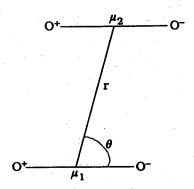
- 7. (a) When does the concentration overpotential arise?

 Derive an equation relating concentration overpotential and limiting current density. 2+5
 - (b) How do you obtain equilibrium exchange current density using high field approximation of Butler Volmer equation?

Group-C

Answer any one of the followings.

8. (a) Lennard-Jones 6–12 potential is given by the following expression:


$$V = 4 \in \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

where ' \in ' is the depth of the potential well, ' σ ' is the internuclear separation at V = 0.

Give a Schematic plot of the potential w.r.t. internuclear distance. Obtain an expression for 'r' where potential has minimum value.

- (b) Draw a Schematic potential energy diagram for the ground and the first excited singlet state for Salicylic acid w.r.t. its intramolecular proton transfer co-ordinate.
- (c) (i) Non-centrosymmetric crystals i.e. where g-u mixing occurs in the molecular wavefunctions are used for second harmonic generation. Explain.
 - (ii) For centrosymmetric molecule g-u transition is forbidden one in magnetic dipole mechanism. Justify or criticize the statement.

 (a) Show that the potential energy of dipole-dipole interaction (V_{d-d}), for two dipoles arranged in the following orientation,

is given by,

$$V_{d-d} = \frac{\mu_1 \mu_2}{4\pi \epsilon_0 r^3} (1 - 3\cos^2 \theta).$$

- (b) Write a short note on London dispersion force. 3
- 10. (a) Define hydrogen bonding and state why water is the most perfectly hydrogen bounded liquid compared to liquid NH₃ or HF.
 - (b) Derive the Debye-Langevin equation and discuss its use in determining the molecular properties. 6