M.Sc. 2nd Semester Examination, 2012

CHEMISTRY

(Inorganic)

PAPER - CEM-203

Full Marks: 40

Time: 2 hours

Answer any four questions

The figures in the right hand margin indicate marks

- 1. (a) Using valence bond theory derive the expression for the energy of symmetric and antisymmetric states of H, molecule.
 - (b) What do you mean by "direct product"?

(c) Establish the relation

$$a_i = \frac{1}{h} \sum_{n} \chi(R) \chi_i(R)$$

where the term have usual significance.

(Turn Over)

2. (a) Show that for $[Mo_2Cl_g]^{4-}$ species, the $\delta \rightarrow \delta^*$ transition is electric-dipole allowed with z-polarization and forbidden for radiation with its electric vector in the xy plane. Given below the character table for D_{Ab} point group.

D _{4h}	E	2C,	<i>C</i> ,	2C',	,2C	', i	25,	σ,	2თ _ა 2	σ,	·	
A_{ig}	1	1	1	1	1	1	1	1	1	1		x^2+y^2,z^2
A ₂₈	1	1	1	-1	-1	1	1	1	-1	-1	R _z	
$B_{_{1g}}$	1	-1	1	1	-1	1	-1	1	1	-1		$x^2 - y^2$
· B _{2g}	1	-1	.1	-1	1	1	-1	1	-1	1		xy
E	2	0	-2	0	0	2	0	-2	0	0	(R_x,R_y)	(xz, yz)
$A_{_{\mathrm{lw}}}$	1	1	1	1	1	-1	-1	-1	³ -1	-1		
A _{2w}	1	1	1	-l	-1	-1	-1	-1	1	1	z	
$B_{_{1w}}$	1	-1	1	1	-1	-1	1	-1	-1	1		·
B _{2m}	1	-1	1	-1	1	-1	1	-1	. 1	-1	-	
E,	2	0	-2	0	0	-2	0	2	0	0	(x, y)	
	l											

(b) Is $p_y - p_x$ an allowed transition in a tetrahedral molecule? Explain. Given below the character table for T_d point group.

and the I de point Broad.									
T_d	E	8C ₃	3C ₂	6S ₄	6σ,				
A_1	1	1	1	1	ĺ		$x^2 + y^2 + z^2$		
A_2	1	1	1	-1	-1		·		
E	2	-1	2	0	0		$(2z^2-x^2-y^2,x^2-y^2)$		
T_1	3	0	-1	, 1	-1	(R_x, R_y, R_z)	·		
T_2	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)		
į					*		ł .		

(c) The ground state of NO_2 is A_1 in the group $C_{2\nu}$. To what excited states may it be excited by electric-dipole transitions, and what polarization of light is necessary to use? Given below the character table for $C_{2\nu}$ point group.

.

3. (a) Which among the following alkenes will bind most strongly to a metal? Give reasons.

(b) Comment on the following observation. "In the IR spectrum of free MeCH = CH₂, $\overline{\nu}_{C-i} \sim 1652$ cm⁻¹, but in the complex K[PtCl₃(η^2 – CH₃ CH = CH₂)], the corresponding absorption bond is ~ 1504 cm⁻¹.

2

- (c) Predict the products of the following reaction:
 - (i) Ir C¹ (CO) (PPh₃)₂ $\xrightarrow{C_6}$

$$(ii) \xrightarrow{\text{CPh}_3]BF_4} \xrightarrow{\text{CH}_3} \xrightarrow{\text{CH}_3}$$

$$(iv) \xrightarrow{\text{CF}_3\text{SO}_3\text{H}} \xrightarrow{\text{Ph}} \text{NO} \xrightarrow{\text{PPh}} \text{O}$$

- (d) Write down the probable binding modes of alkynes in transition metal alkyne complex.
- (a) If an olefin has to bind to a transition metal. say Cr. which of the olefins, Cis-Cyclooctene or trans-cyclooctene will form the stronger complex and why?

(b) Which of the following metal alkene complexes do you think will look most like a metallacyclopropane? Explain your answer:

- (i) $(CH_2 CH_2)$ Ni (PPh_1)
- (ii) (CH, = CH,) Fe $(CO)_A$

How will you synthesize a transition -metal allyl complex starting from a carbonylate ion?

(d) Complete the following reaction

- 5. (a) Discuss "Nonflame AAS technique".
 - (b) What is the application of cyclic voltammetry? 2
 - (c) Explain why fluorescence intensity of C₆H₅ NH₂ is 20 whereas in case of C₆H₅NO₂ that is nil? 2
 - (d) Define molar absorptivity. What is its unit? 3

3

6.	(a)	Discuss about photoemissive phototube.	3						
	(b)	Zinc complex of 8-hydroxyquinoline show higher grade of fluorescence but 8-hydroxyquinoline does not—why?	2						
	(c)	Why is oxygen to be removed from the polarographic cell before experiment?	3						
	(d)	What is the basic difference between a calorimeter and a spectrophotometer?	2						
7.	(a)	What do you mean by "Irving William Order"?	2						
	(b)	Write statistical and non-statistical factors which control the stability of a complex in solution.							
	(c)	Discuss the determination of composition and stability constant of a complex by spectrophotometric method.							
			3						
	(d)	Give an example of cyclic neutral ionophores.	1						
	(e)	What do you mean by labile and inert complexes? Give example of each.	2						