M.Sc. 3rd Semester Examination, 2012 CHEMISTRY

PAPER-CEM-304

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

(Organic + Physical)

[Marks: 40]

Time: 2 hours

Answer Q. No. 1 and any three from the rest

- 1. (a) Write down the structures of the repeat unit of the following polymers:
 - (i) Polyvinyl acetate
 - (ii) Nylon 6
 - (b) Define the term "glass transition temperature", T_g as applicable to polymers.

(c)	Account	for	the	very	high	melt	and	soluti	on.
	viscosity	of p	olym	iers.					

- (d) How is molecular weight of polymer controlled in condensation polymerisation process?
- (e) 90% molecules of a polymer mass have molecular weight of 1,00,000 and the molecular weight of the rest is 30,000. Calculate \overline{M}_n and \overline{M}_w of the polymer sample. 2×5
- 2. (a) Write down the mechanism for free radical polymerisation of vinyl chloride using benzoyl peroxide as initiator.
 - (b) Deduce the rate expression for the cationic polymerisation of isobutylene using the mixture of BF, and H₂O as the initiating system.
- 3. (a) What is chain transfer?
 - (b) For a free radical polymerisation involving chain transfer reactions establish the Mayo equation.
 - (c) Write down the relationship between kinetic chain length (v) and number average degree of polymerisation $(\overline{X_n})$.

6

6

4.	(a)	For condensation polymerisation of two monomers of A-A and B-B type where A and B represent functional groups, deduce an expression relating the number average degree of polymerisation $\overline{X_n}$ with extent of reaction ' p ' and ' r ', where ' r ' is a measure of stoichiometric imbalance.	5
	(b)	Calculate the number average degree of polymerisation of an equimolar mixture of adipic acid and hexamethylene diamine for extents of reaction 0.60, 0.75 and 0.90.	3
	(c)	Give examples of an inhibitor and a retarder.	2
5.	(a)	Derive the copolymer composition equation for a binary copolymerisation system using free radical initiator.	8
	(b)	What is azeotropic copolymerisation?	2
6.	(a)	Differentiate between addition and condensation polymerisation.	4
	<u>(b)</u>	Calculate the viscosity average molecular weight \overline{M}_v of a polymer if the intrinsic viscosity is 2·3 dL/g. Given $k = 3.6 \times 10^{-3}$ and $\infty = 0.60$.	-
		Given $k = 3.0 \times 10^{-3}$ and $\infty = 0.00$.	2

(c)	Suggest methods for determining \overline{M}_n , \overline{M}_w and \overline{M}_z						
*	of a polymer sample. Show the relative positions						
	of \overline{M}_n , \overline{M}_w and \overline{M}_v	in	a	molecular	weight		
	distribution curve.						

7. Write short notes on any two of the following: 5×2

- (i) Emulsion polymerisation
- (ii) Anionic polymerisation
- (iii) Kinetics of self-catalysed polyesterification reaction
- (iv) Morphology of polymer.

(Inorganic)

(Environmental Chemistry)

[Marks : 40]

Time: 2 hours

Answer any four questions

- 1. (a) Discuss the structure of atmosphere in brief with temperature profile.
 - (b) Comment on the origin of soot particle.

(c)	What is Van Allen belts?	2
(d)	Define following nomenclatures:	2
	(i) Speciation(ii) Threshold Limit Value (TLV).	
(a)	What is El Nino? How does it affect the global climate?	4
(b)	NOx plays an effective role in removing O_3 in the stratosphere. Explain.	3
(c)	Illustrate the concentration profiles of smog forming chemical in Los Angeles air.	3
(a)	Discuss the role of NOx as primary air-pollutant on the basis of concentration profile and control techniques.	- 3
(b)	Illustrate how PAN is formed in a smog-producing chain reaction.	2
(c)	How can internal combustion engines be modified to make autoexhausts free from pollutants?	2
(a)	Illustrate the nitrogen pathways in soil.	4

	(0)	why is the pri of sea water constant at 6.1 ± 0.2 ?	-
	(c)	P^E of sea water is constant at 12.5 ± 0.2 . Explain.	3
5.	(a)	Enumerate the biochemical effects of arsenic (As) with particular reference to its sources, species and pathways in the environment and impact on humans.	4
	(b)	Explain the mechanism of action of persistent pesticide in the environment.	4
	(c)	Explain the propagation of DDT in food chain.	2
6.	(a)	Discuss the biochemical effects of cyanide.	4
	(b)	Discuss the inorganic and organic components in soil.	4
	(c)	Define mist, fog and aerosol.	2
7.	(a)	What do you mean by solid waste? Write down the classification of solid wastes.	- 3

(b) Write down the problem associated with the discharge of synthetic compounds like pesticides, detergents etc. in the waste water.

(c) Write a short note on biomineralogy.

MV--200