M.Sc. 3rd Semester Examination, 2012

CHEMISTRY

PAPER-CEM-303

The figures in the right-hand margin indicate marks

(Organic Special)

[Marks: 40]

Time: 2 hours

Answer any five questions

- 1. (a) Which nucleus will show NMR spectra?
 - (b) How does resonance occur in NMR?
 - (c) Show the ¹H-NMR spectra of CH₃-CH₂-OH when it is (i) extra pure (in the absence of any acidic impurities), (ii) in the presence of traces of acidic impurities. 2 × 4

2. (a) Calculate the percentage of keto and enol forms of acetylacetone from the data given below:

$$H_3C$$
 H_3C
 H_3C

(b) How would you distinguish between the following pairs of isomers from their proton chemical shifts? Indicate only the distinguishing feature(s) (any three):

3. (a) What is Karplus equation? How this equation can be used to distinguish the following isomers:

- (b) What is the relative order of J_{gem} , J_{cis} and J_{trans} in a monosubstituted olefin of the type R-CH = CH₂? Give reasons for your answer. 4×2
- 4. What is Nuclear Overhauser Effect? Explain the reason for this effect. The chemical shifts (in δ_{ppm}) of the vinylic methyls and the olefinic protons of citral-a(1) and citral-b(2) are shown on their

structural diagrams. How would you confirm their indicated stereochemistry and the assignments of the chemical shifts of the vinylic methyl protons at δ 1.68, 1.61 and 1.60 by Nuclear Overhauser Effect? 2+2+4

- 5. (a) What is metastable ion peak?
 - (b) Identify the compound C₉H₁₁NO with the following spectral characteristics (with proper reasons):

UV: λ_{max} 235 (ϵ 8650) and 320 (ϵ 28300); IR: 2820, 2740, 1695, 1600(s), 1567, 1526, 808, 720 cm⁻¹; ¹H-NMR: δ 9·72 (1H, s), 2·98 (6H, s), 6·70 and 7·75 (each 2H, d, J= 9 Hz); MS: m/z 149 (M⁺), 148, 120.

6. (a) What is Mclafferty rearrangement in the mass spectral fragmentation of organic compounds?

6

Give direct evience for the mechanism of this rearrangement using appropriate deuterium labeled compound.

(b) How would you distinguish between the following isomeric compounds from their mass spectral fragmentation?

(ii)
$$H_3C$$
 and CH_3 CH_3 CH_3
(iii) H_3C CH_3 and CH_3 CH_3
(iii) CH_3 $CH_$

7. What are the full names of the terms COSY, HMQC and HMBC? What informations do they provide? Draw the COSY spectra of ethyl trans- crotonate having the following ¹H and ¹³C NMR spectral data.

¹H NMR: δ 1·24(2H, t, J = 7·0 Hz), 1·88 (3H, dd, J_1 = 6·8 Hz, J_2 = 1·7 Hz), 4·13 (2H, q, J = 7·0 Hz),

5.81 (1H, dq, $J_1 = 16$ Hz and $J_2 = 1.7$ Hz) an 6.90 (1H, dq, $J_1 = 16$ Hz and $J_2 = 6.8$ Hz) ¹³C NMR: δ_c 15.2 and 60.1 (OEt), 18.1 (Me-CH=), 124.5 (C-2), 145.3 (C-3) and 168.0 (C = O). 2+2+4

- 8. (a) What is used as a reference compound in D₂O as NMR solvent?
 - (b) The two lines of a doublet in 400 MHz ¹H-NMR spectrum appears at 2.35 ppm and 2.38 ppm. Calculate the coupling constant (J).
 - (c) Draw the possible configurations of the geometrical isomers of dimethylmuconate having the general structural formula MeO₂C CH = CH CH = CH CO₂Me. Indicate how you would ascertain their stereochemistry from the chemical shifts of their olefinic protons?
 - (d) Explain the unusual chemical shifts (ppm) of the indicated protons of the following compound:

1

(Inorganic Special)

[Marks: 40]

Time: 2 hours

Answer any four questions

1.	(a)	What is cyclic Voltammetry? Why it is so called.	4
	(b)	State the application of cyclic voltammetry.	2
	(c)	Why is oxygen to be expelled from the polarographic cell before the experiment?	4
2.	(a)	What is Retention Factor (R_F) and Retention Time (R_T) in GLC?	4
	(b)	State the factors on which R_T depends.	3
	(c)	Name a few detectors used in HPLC.	3
3.	An	swer any <i>five</i> of the following: $2 \times$: 5
	(a)	Differentiate quantum well and quantum wire.	٠,
	(b)	Name four different techniques of thin film synthesis.	
	(c)	Why quantum effect is expected in nanomaterials?	

(d)	What is UHV? Name different pump system to reach UHV.	
(e)	What do you mean by e-lithography?	
(f)	Draw the density of state-energy diagram for OD and ID structure.	
(g)	In nanomaterials surface to volume ratio increased from their bulk counterpart. True or false? Justify.	ş. 1.
(h)	What do you mean by PLD synthesis technique?	
(a)	Justify the statement in the process of extraction, the extracting solvent should be used in parts instead of using the whole liquid in one lot.	3
(b)	How do you separate Copper and Lead in a solution by solvent extraction method?	4
	Calculate the amount of Fe ⁺³ left unextracted from 100 ml of a solution containing 200 mg of Fe ⁺³ after three extractions with 25 ml of ether each time. The value of distribution ratio in this case	
	is 150?	3
(a)	What is the basic difference in probe microscopy and electron microscopy?	3
(b)	What is the working principle of AFM?	2

PG/IIIS/CEM-303/12

(Continued)

(c)	What kind of information will come out from the following instruments?	3
	(i) NMR (ii) XRD (iii) FTIR.	
(d)	What do you mean by luminescence? What is photo-luminescence?	2
(a)	Determine the fraction of atoms in a given solid with the energy equal to 1.5 eV at room temperature and at 1000 K. What conclusion you can draw from these results?	1
(b)	Find an expression of dislocation energy in a solid containing screw dislocation? What is Burger vector? 5 +	1
(a)	Explain what is the physical origin of band gap in a solid.	6
(b)	The E-K relation in CdS is given by $E = AK^2 + BK^3$, where A and B are positive constants. Find the effective mass of the electron at the bottom of conduction band.	3
(c)	What is meant by indirect band gap material?	1

(Physical Special)

[Marks: 40]

Time: 2 hours

Answer four questions taking one from each Group

GROUP - A

1. Probability of transition from state 'n' to 'k' under a perturbing field H' is given by

$$W_{n\to k} = \left| C_k^{(1)} \right|^2 = \frac{1}{\hbar^2} \left| \int_{t'=0}^{t'=t} e^{iW_{kn}t'} H'_{kn} dt' \right|^2$$

(Symbols have their usual significance)

Evaluate the transition probability using a perturbing field which is oscillating with time. Comment on your result. 6+4

broadening? Deduce the line shape function for Doppler broadening. How do you obtain the temperature of a gas from its Doppler line shape?

1 + 1 + 2 + 3 + 3

GROUP - B

- Write down the characteristic features of LASER 3. radiation. "Inversion of population can be achieved in a two level system." - Justify or criticize the statement.
- (a) What is meant by Q-switching mode of LASER? How do you obtain giant LASER pulse using Q-switching mode? 2 + 4
 - (b) Describe mode locking technique to obtain short LASER pulses.

GROUP - C

What is meant by E-type and P-type delayed emission? 5. How do you obtain singlet-triplet energy gap ($\Delta E_{\rm st}$) for a molecule showing E-type delayed emission?

2 + 2 + 6

(a) Deduce the following expression for unimolecular 6. photophysical process.

$$\frac{\phi_p}{\phi_f} = \left(\frac{K_{\rm ISC}}{K_f}\right) \left(\frac{K_p}{K_{\rm ISC}^T + K_p}\right)$$

Where symbols have their usual significance.

(b) State and explain the factors responsible for radiationless transition.

4

GROUP - D

- 7. (a) What is spin relaxation in NMR spectroscopy?

 Why is it so important to observe NMR transition?
 - (b) "The net effect of spin lattice relaxation is to depopulate the higher level than to populate it."
 Explain.
 2+2+6
- 8. (a) Deduce the selection rule for NMR transition. 4
 - (b) Define chemical shift (δ_H) in NMR spectra. "Chemical shift of a given proton decreases with an increase in shielding constant." Explain. 2+4