3–Remainder Cordial Labeling of Cycle Related Graphs

K.Annathurai1, R.Ponraj2 and R.Kala3

1Department of Mathematics, Thiruvalluvar College
Papanasam, Tirunelveli–627 425, Tamil Nadu, India.
e-mail: kannathuraitvcmaths@gmail.com

2Department of Mathematics, Sri Paramakalyani College
Alwarkurichi–627 412, India. e-mail: ponrajmaths@gmail.com

3Department of Mathematics, Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli–627 012, Tamil Nadu, India.
e-mail: karthipyi91@yahoo.co.in

Received 2 December 2018; accepted 21 January 2019

ABSTRACT

Let G be a (p, q) graph. Let f be a function from V (G) to the set \{1, 2, \ldots, k\} where k is an integer 2 < k ≤ |V (G)|. For each edge uv assign the label r where r is the remainder when f(u) is divided by f(v) (or) f(v) is divided by f(u) according as f(u) ≥ f(v) or f(v) ≥ f(u). Then the function f is called a k-remainder cordial labeling of G if |v_f(i) − v_f(j)| ≤ 1, i, j ∈ \{1, \ldots, k\} where v_f(x) denote the number of vertices labeled with x and |η_e − η_o| ≤ 1 where η_e and η_o respectively denote the number of edges labeled with an even integers and number of edges labeled with an odd integers. A graph admits a k-remainder cordial labeling is called a k-remainder cordial graph. In this paper we investigate the 3-remainder cordial labeling behavior of the Web graph, Umbrella graph, Dragon graph, Butterfly graph, etc.,

Keywords: Web graph, Umbrella graph, Dragon graph, Butterfly graph

Mathematical Subject Classification (2010): 05C78

1. Introduction

Graphs considered here are finite and simple. Graph labeling is used in several areas of science and technology like coding theory, astronomy, circuit design etc. For more details refer Gallian [1]. The origin of graph labeling is graceful labeling which was introduced by Rosa (1967). Ponraj et al. [3,5], introduced remainder cordial labeling of graphs and investigate the remainder cordial labeling behavior of certain graphs, and also the concept of k-remainder cordial labeling introduced [4,6,7] and investigate the 4-remainder cordial labeling behavior of Grid, Subdivision of crown, Subdivision of bistar, Book, Jelly fish, Subdivision of Jelly fish, Mongolian tent, Flower graph, Sunflower graph and Subdivision of Ladder graph, L_n O K_1, L_n O 2K_1, L_n O K_2. Recently, Ponraj et al. [8,9], further introduced the 3-remainder cordial labeling behavior of certain graphs. we prove that path, cycle, star, comb, crown, wheel, fan, square of path, subdivision of wheel, subdivision of star, subdivision of comb, armed crown, K_{i,n} O K_2 are 3-remainder cordial.
In this paper we investigate the 3-remainder cordial labeling behavior of Web graph, Umbrella graph, Dragon graph, Butterfly graph, etc. Terms are not defined here follows from Harary [2] and Gallian [1].

2. Preliminary results

Definition 2.1. The butterfly graph \(B_{m,n} \) is a two even cycles of the same order say \(C_n \), sharing a common vertex with \(m \) pendant edges attached at the common vertex is called a butterfly graph.

Definition 2.2. The umbrella graph \(U_{n,m} \) is obtained from a fan \(F_n = P_n + K_1 \) where \(P_n = u_1, u_2, \ldots, u_n \) and \(V(K_1) = \{u\} \) by pasting the end vertex of the path \(P_m = v_1, v_2, \ldots, v_m \) to the vertex of \(K_1 \) of the fan \(F_n \).

Definition 2.3. The web graph \(W_{2,n} \) is the graph obtained from a closed Helm \(CH_n \) by adding a single pendent edge to each vertex of the outer cycle.

Definition 2.4. A dragon graph is a graph formed by joining an end vertex of a path \(P_n \) to a vertex of the cycle \(C_m \). It is denoted as \(C_m \oplus P_n \).

2. k-remainder cordial labeling

Definition 2.1. Let \(G \) be a \((p, q)\) graph. Let \(f \) be a function from \(V(G) \) to the set \{1, 2, \ldots, k\} where \(k \) is an integer \(2 < k \leq |V(G)| \). For each edge assign the label \(r \) where \(r \) is the remainder when \(f(u) \) is divided by \(f(v) \) or \(f(v) \) is divided by \(f(u) \) according as \(f(u) \geq f(v) \) or \(f(v) \geq f(u) \). The function \(f \) is called a \(k \)-remainder cordial labeling of \(G \) if \(|v_f(i) - v_f(j)| \leq 1 \), \(i, j \in \{1, \ldots, k\} \) where \(v_f(x) \) denote the number of vertices labeled with \(x \) and \(|\eta_e - \eta_o| \leq 1 \) where \(\eta_e \) and \(\eta_o \) respectively denote the number of edges labeled with an even integers and number of edges labeled with an odd integers. A graph with a \(k \)-remainder cordial labeling is called a \(k \)-remainder cordial graph.

First we investigate the 3-remainder cordial labeling behavior of the web graph \(W_{2,n} \).

Theorem 2.2. The web graph \(W_{2,n} \) is 3-remainder cordial for all even values of \(n \).
Proof: Let \(V(W_{2,n}) = V(C_n \times P_2) \cup \{w_i : 1 \leq i \leq n\} \) and \(E(W_{2,n}) = E(C_n \times P_2) \cup \{v_iw_i : 1 \leq i \leq n\} \). Then it is easy to verify that \(W_{2,n} \) has 3n vertices and 4n edges. First we consider the vertices \(u_1, v_1 \) and \(w_1 \). Assign the labels 1, 2 and 3 respectively to the vertices \(u_1, v_1 \) and \(w_1 \). Next consider the vertices \(u_2, v_2 \) and \(w_2 \). Assign the labels 1, 3 and 2 to the vertices \(u_2, v_2 \) and \(w_2 \) respectively. Next we move to the vertices \(u_3, v_3 \) and \(w_3 \) and assign the labels 1, 2 and 3 respectively to the vertices \(u_3, v_3 \) and \(w_3 \). Next assign the labels 1, 3 and 2 to the vertices \(u_4, v_4 \) and \(w_4 \). That is assign the labels 1, 2, 3; 1, 1, 3; 2, 1, 3; respectively to the vertices \(u_1, v_1, w_1; u_2, v_2, w_2; \ldots; u_n, v_n, w_n \). Note that the vertex condition and edge condition are \(v_f(1) = v_f(2) = v_f(3) = n \) and \(\eta_e = \eta_o = 2n \) respectively. Hence the function \(f \) is 3-remainder cordial labeling behavior of the web graph \(W_{2,n} \) all even values of \(n \).
Next we investigate the dragon $C_m \circ P_n$.

Theorem 2.3. The dragon graph $C_m \circ P_n$ is 3-remainder cordial for all $m \geq 3$ and $n=m$.

Proof: Let $C_m = u_1u_2 \ldots \ldots u_nu_1$ be the cycle and $P_n = v_1, v_2 \ldots \ldots v_n$ be the path. Without loss of generality, unify the vertices u_1 with v_1. Clearly the order and size of the dragon $C_m \circ P_n$ are $2n-1$ and $2n-1$ respectively.

Case(1): $n \equiv 0 \pmod{3}$ and n is odd.

First consider the vertices $v_1, v_2, \ldots \ldots v_n$ of the path. Assign the label 2 to the vertices $v_1, v_3, \ldots \ldots v_{n-1}$ and 3 to the vertices $v_2, v_4, \ldots \ldots v_{n-1}$. Next consider the vertices u_i for $2 \leq i \leq n$. Fix the labels $1, and 1$ to the first two vertices u_2 and u_3. Next assign the labels $1,2,$ and 1 respectively to the next three vertices u_4,u_5, and u_6. Then assign the labels $1,3,$ and 1 respectively to the next three vertices u_7,u_8, and u_9. Proceeding like this until we reach the vertices $u_{n-2},u_{n-1},$ and u_n. Clearly the vertices $u_{n-2},u_{n-1},$ and u_n received the labels $1,3,$ and 1 for this pattern.

Case(2): $n \equiv 0 \pmod{3}$ and n is even.

First consider the vertices v_i of the path. Assign the label 2 to the vertices $v_1, v_3, \ldots \ldots v_{n-1}$ and 3 to the vertices $v_2, v_4, \ldots \ldots v_{n}$. Next consider the vertices u_i for $2 \leq i \leq n$. As in case(1), assign the labels to the vertices u_i for $2 \leq i \leq n-3$. Finally assign the labels $1,2,$ and 1 respectively to the last three vertices $u_{n-2},u_{n-1},$ and u_n.

Case(3): $n \equiv 1 \pmod{3}$ and n is odd.

As in case(1), assign the labels to the vertices v_i of the path for $1 \leq i \leq n$. Next consider the vertices u_i for $2 \leq i \leq n$. Fix the labels $1,3,$ and 1 to the first three vertices $u_2,u_3,$ and u_4. Next assign the labels $1,3,$ and 1 respectively to the next three vertices $u_{i},u_{i+1},$ and u_{i+2}. Then assign the labels $1,2,$ and 1 respectively to the next three vertices $u_{i+3},u_{i+4},$ and u_{i+5}. Continuing like this until we reach the vertices $u_{n-2},u_{n-3},$ and u_n. Then clearly the vertices $u_{n-2},u_{n-1},$ and u_n received the labels $1,3,$ and 1 for this pattern.

Case(4): $n \equiv 1 \pmod{3}$ and n is even.

As in case(2), assign the labels to the vertices v_i of the path for $1 \leq i \leq n$. Next consider the vertices u_i for $2 \leq i \leq n$. As in case(3), assign the labels to the vertices u_i for $2 \leq i \leq n-3$. Finally assign the labels $1,2,$ and 1 respectively to the last three vertices $u_{n-2},u_{n-1},$ and u_n.

Case(5): $n \equiv 2 \pmod{3}$ and n is odd.

As in case(1), assign the labels to the vertices v_i of the path for $1 \leq i \leq n$. Next consider the vertices u_i for $2 \leq i \leq n$. Fix the labels $1,1,3,$ and 1 to the first four vertices $u_2,u_3,$ $u_4,$ and u_5. Next assign the labels $1,2,$ and 1 respectively to the next three vertices $u_{i},u_{i+1},$ and u_{i+2}. Then assign the labels $1,3,$ and 1 respectively to the next three vertices $u_{i+3},u_{i+4},$ and u_{i+5}. Proceeding like this until we reach the vertices $u_{n-2},u_{n-1},$ and u_n. Then clearly the vertices $u_{n-2},u_{n-1},$ and u_n received the labels $1,3,$ and 1 for this pattern.

Case(6): $n \equiv 2 \pmod{3}$ and n is even.
As in case(2), assign the labels to the vertices v_i of the path P_n for $1 \leq i \leq n$. Next consider the vertices u_i for $2 \leq i \leq n$. As in case(5), assign the labels to the vertices u_i for $2 \leq i \leq n -3$. Finally assign the labels 1, 2, and 1 to the last three vertices u_{n-2}, u_{n-1}, and u_n respectively. The table -1, establish that the function f is 3- remainder cordial labeling of the dragon graph $C_m \circ P_n$.

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>$v_i(1)$</th>
<th>$v_i(2)$</th>
<th>$v_i(3)$</th>
<th>η_e</th>
<th>η_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \equiv 0 \ (mod\ 3)$</td>
<td>$\frac{2n}{3}$</td>
<td>$\frac{2n}{3}$</td>
<td>$\frac{2n-3}{3}$</td>
<td>n</td>
<td>$n-1$</td>
</tr>
<tr>
<td>$n \equiv 1 \ (mod\ 3)$</td>
<td>$\frac{2n-2}{3}$</td>
<td>$\frac{2n-2}{3}$</td>
<td>$\frac{2n+1}{3}$</td>
<td>n</td>
<td>$n-1$</td>
</tr>
<tr>
<td>$n \equiv 2 \ (mod\ 3)$</td>
<td>$\frac{2n-1}{3}$</td>
<td>$\frac{2n-1}{3}$</td>
<td>$\frac{2n-1}{3}$</td>
<td>n</td>
<td>$n-1$</td>
</tr>
</tbody>
</table>

Table 1:

Next we investigate the 3-remainder cordial labeling behavior of the butterfly graph $BF_{m,n}$.

Theorem 2.4. The butterfly graph $BF_{m,n}$ is 3-remainder cordial for all $m \geq 3$ and $n=m$.

Proof: Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be the two copies of the cycle C_n. Without loss of generality, unify the vertices u_1 and v_1. Let w_1, w_2, \ldots, w_n be the n pendent vertices. Clearly the order and size of the butterfly graph $BF_{m,n}$ are $3n-1$ and $3n$ respectively.

Case(1): n is odd.

First we consider the vertices u_i of the cycle C_n. Assign the label 1 to the vertices u_i for $2 \leq i \leq n$. Next we consider the vertices v_i of the another cycle C_n. Assign the label 2 to the vertices v_1, v_3, \ldots, v_n. Then next assign the label 3 to the vertices $v_2, v_4, \ldots, v_{n-1}$. Now consider the pendent vertices w_i for $1 \leq i \leq n$.

Assign the label 3 to the first $\frac{n-1}{2}$ pendent vertices and assign the label 2 to the remaining $\frac{n-1}{2}$ pendent vertices.

Case(2): n is even.

As in case(i), assign the labels to the vertices u_i for $2 \leq i \leq n$. Now we consider the vertices v_i of the another cycle C_n. Assign the label 2 to the vertices v_1, v_3, \ldots, v_n. Then next assign the label 3 to the vertices $v_2, v_4, \ldots, v_{n-1}$. Now consider the pendent vertices w_i for $1 \leq i \leq n$. Assign the label 3 to the first $\frac{n}{2}$ pendent vertices and assign the label 2 to the remaining $\frac{n}{2}$ pendent vertices. The table-2, shows that the function f is 3- remainder cordial labeling of the butterfly graph $BF_{m,n}$.

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>$v_i(1)$</th>
<th>$v_i(2)$</th>
<th>$v_i(3)$</th>
<th>η_e</th>
<th>η_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>n is odd</td>
<td>$n-1$</td>
<td>n</td>
<td>$3n+1$</td>
<td>$\frac{3n-1}{2}$</td>
<td></td>
</tr>
<tr>
<td>n is even</td>
<td>$n-1$</td>
<td>n</td>
<td>$3n$</td>
<td>$\frac{3n}{2}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 2:
3–Remainder Cordial Labeling of Cycle Related Graphs

Here we investigate the umbrella graph $U_{m,n}$.

Theorem 2.5. The umbrella graph $U_{m,n}$ is 3-remainder cordial for all $m \geq 3$ and $n = m$.

Proof: Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be the vertices of the umbrella graph $U_{m,n}$. Let u_1, u_2, \ldots, u_n be the vertices of the path P_n and v_1, v_2, \ldots, v_n be the vertices of the fan F_n. Without loss of generality, unify the vertices u_i and v_i. Then clearly the order and size of the umbrella graph $U_{m,n}$ are $2n$ and $3n-2$ respectively.

Case(1): $n \equiv 0 \pmod{3}$ and n is even.

Assign the labels 2, 1 and 1 respectively to the vertices u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n of $U_{m,n}$. Next assign the labels 2, 1 and 1 respectively to the vertices u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n of $U_{m,n}$. First assign the labels 2, 3 and 1 to the vertices u_1, u_2, u_3, and v_1 respectively. Next assign the labels 2, 3 and 1 to the vertices u_1, u_2, u_3, and v_1 respectively. Proceeding like this until we reach the vertices u_n, u_{n-1}, and u_n are received the labels 2, 1 and 1 respectively.

Case(2): $n \equiv 0 \pmod{3}$ and n is odd.

As in case(1), assign the labels to the vertices v_i for $1 \leq i \leq n$, and u_i for $1 \leq i \leq n-3$. Finally assign the labels 2, 3 and 1 to the vertices u_{n-2}, u_{n-1}, and u_n respectively.

Case(3): $n \equiv 1 \pmod{3}$ and n is even.

Assign the label 1 to the vertices $v_1, v_2, \ldots, v_{n-1/3}$ and assign the label 3 to the vertices $v_{(n-1/3)+1}, v_{(n-1/3)+2}, \ldots, v_n$ and followed by assign the label 2 to the vertices $v_{(n-1/3)+4}, v_{(n-1/3)+5}, \ldots, v_n$. Next consider the vertices u_i of the path P_n. First assign the labels 2, 3 and 1 to the vertices u_1, u_2, and u_3 respectively. Next assign the labels 2, 3 and 1 to the vertices u_1, u_2, and u_3 respectively. Proceeding like this until we reach the vertices $u_{n-3}, u_{n-2}, u_{n-1}$, and u_n are received the labels 1, 2 and 3 respectively.

Case(4): $n \equiv 1 \pmod{3}$ and n is odd.

As in case(3), assign the labels to the vertices v_i for $1 \leq i \leq n$. Next assign the labels 2, 3 and 1 to the vertices u_1, u_2, and u_3 respectively and as in case(3), assign the labels to the vertices u_i for $4 \leq i \leq n$.

Case(5): $n \equiv 2 \pmod{3}$ and n is even.

Assign the label 1 to the vertices $v_1, v_2, \ldots, v_{n+1/3}$ and assign the label 3 to the vertices $v_{(n+1/3)+1}, v_{(n+1/3)+2}, \ldots, v_n$ and followed by assign the label 2 to the vertices $v_{(n+1/3)+4}, v_{(n+1/3)+5}, \ldots, v_n$. Next consider the vertices u_i of the path P_n. Fix the labels 2, 3 and 1 to the vertices u_1, u_2, and u_3 respectively. Next assign the labels 2, 3 and 1 to the vertices u_1, u_2, and u_3 respectively. Assign the labels 2, 3 and 1 to the vertices $u_{n-3}, u_{n-2}, u_{n-1}$, and u_n respectively. Proceeding like this until we reach the vertices $u_{n-3}, u_{n-2}, u_{n-1}$, and u_n are received the labels 2, 3 and
K.Annathurai, R.Ponraj and R.Kala

1 to the vertices \(u_{10}, u_{11}, \) and \(u_{12} \) respectively. Continuing like this until we reach the vertices \(u_{n-6}, u_{n-5}, \) and \(u_{n-4} \) are received the labels 2,3 and 1 respectively.

Case (6): \(n \equiv 2 \) (mod 3) and \(n \) is even.

As in case(5), assign the labels to the vertices \(v_i \) for \(1 \leq i \leq n \), and assign the labels to the vertices \(u_i \) for \(1 \leq i \leq n-2 \). Finally assign the labels 2 and 3 to the last two vertices \(u_{n-1} \) and \(u_n \) respectively. The table -3, establish that the function \(f \) is 3- remainder cordial labeling of the umbrella graph \(U_{m,n} \).

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(v_1(1))</th>
<th>(v_1(2))</th>
<th>(v_1(3))</th>
<th>(\eta_e)</th>
<th>(\eta_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 0) (mod 3) & (n) is odd</td>
<td>(\frac{2n}{3})</td>
<td>(\frac{2n}{3})</td>
<td>(\frac{2n}{3})</td>
<td>(\frac{3n-1}{2})</td>
<td>(\frac{3n-3}{2})</td>
</tr>
<tr>
<td>(n \equiv 0) (mod 3) & (n) is even</td>
<td>(\frac{2n}{3})</td>
<td>(\frac{2n}{3})</td>
<td>(\frac{2n}{3})</td>
<td>(\frac{3n-2}{2})</td>
<td>(\frac{3n-2}{2})</td>
</tr>
<tr>
<td>(n \equiv 1) (mod 3) & (n) is odd</td>
<td>(\frac{2n-1}{3})</td>
<td>(\frac{2n+1}{3})</td>
<td>(\frac{2n+1}{3})</td>
<td>(\frac{3n-1}{2})</td>
<td>(\frac{3n-3}{2})</td>
</tr>
<tr>
<td>(n \equiv 1) (mod 3) & (n) is even</td>
<td>(\frac{2n-1}{3})</td>
<td>(\frac{2n+1}{3})</td>
<td>(\frac{2n+1}{3})</td>
<td>(\frac{3n-2}{2})</td>
<td>(\frac{3n-2}{2})</td>
</tr>
<tr>
<td>(n \equiv 2) (mod 3) & (n) is odd</td>
<td>(\frac{2n-1}{3})</td>
<td>(\frac{2n-1}{3})</td>
<td>(\frac{2n+2}{3})</td>
<td>(\frac{3n-1}{2})</td>
<td>(\frac{3n-3}{2})</td>
</tr>
<tr>
<td>(n \equiv 2) (mod 3) & (n) is even</td>
<td>(\frac{2n-1}{3})</td>
<td>(\frac{2n-1}{3})</td>
<td>(\frac{2n+2}{3})</td>
<td>(\frac{3n-1}{2})</td>
<td>(\frac{3n-3}{2})</td>
</tr>
</tbody>
</table>

Table 3:

3. **Conclusion**

The main aim of this paper was to present blow-up results for a graph labeling problems subject to certain conditions. The possible generalization is plan to present the sufficient conditions which guarantee the occurrence of the blow-up.

Acknowledgement. The author’s are sincerely grateful to the reference and the editor handling the paper for their valuable comments

REFERENCES

2. F.Harary, Graph theory, Addision wesley, New Delhi, 1969.
5. R.Ponraj, K.Annathurai and R.Kala, Remainder cordiality of some graphs, Accepted for publication in Palestine Journal of Mathematics.
3–Remainder Cordial Labeling of Cycle Related Graphs

